

Passive Hydrocarbon Remediation in a Foreshore Marine Environment

Contaminated Sites Approved Professional Society Fall Workshop November 16, 2017

Parkland Fuel Corporation recently acquired the following downstream business: refinery, gas stations, bulk plants, marine terminals.

Parkland's values:

- Protecting the health and safety of individuals, communities, and eco-systems;
- Providing our customers with a reliable and dependable fuel supply;
- Delivering outstanding customer service; and
- Supporting the communities we operate in.

Foreshore Seep

- Discovered on April 21, 2010 and immediately reported to PEP
 - Mixed NAPL hydrocarbon seeps observed in an area adjacent to the railroad and on the foreshore below the refinery.

Emergency response

- Foreshore Refinery responded immediately with soaker pads and booms to mitigate the effects of the NAPL seeps.
- Area near Railroad passing excavator was hailed to dig a collection ditch pads and vacuum truck applied

Project Area and Upland Perimeter Extraction System

Looking North

Cross Section and Key Limiting Site Conditions

Interim Remedial Action (IRA) Barrier

The first passive remedial system, installed in the spring of 2011, was designed to absorb oil using oleophilic clay and sand in a trench, and oleophilic clay in a geotextile mat

Oleophilic Mat

IRA Refurbishment

Groundwater channeling / preferred pathways through the oleophilic clay required us to install more sand-organoclay mixture, and to introduce baffles, in March 2012

IRA NAPL Mobility and Hydrocarbon Degradation Assessment

- NAPL no longer observed in wells in the IRA after Sept 2011; pump tests in 2014 were unable to induce NAPL flow
- Based on monitoring and sampling completed between 2012 and 2016, dissolved phase concentrations were above risk-based targets in water inside the IRA, but below such targets in downgradient wells
- DNA/RNA analysis showed presence of degrading organisms

IRA NAPL Mobility and Hydrocarbon Degradation Assessment (cont.)

- GC-GC/MS Analysis of PHCs showed increase in oxidized PHCs
- Sulfate was present. Dissolved oxygen was periodically present from tidal mixing
- Multiple lines of evidence to support biodegradation within the barrier

 The IRA barrier succeeded in its objective of capturing NAPL and also degraded dissolved phase contamination

- The IRAs were installed as interim measures and had the following drawbacks:
 - Permeability difficulties led to preferred pathways
 - Limited ability to withstand erosion
 - Limited capacity to assess upgradient porewater concentrations
 - Not designed to treat sheens
 - Not specifically designed to treat dissolved phase contamination

- Next step was to design and install a final, permanent remedy.
 Remedial options explored.
- To that end a human health and ecological risk assessment was completed by SLR in 2012
- SLR also developed risk-based management targets for the site. Based on the risk-based targets, the remedial driver for the site was LEPHw

- Last 30 years
- Treat NAPL
- Treat dissolved phase impacts, notably LEPHw
- Resist erosion
- Maintain permeability
- Install monitoring wells up slope, cross gradient, within and down slope of the system
- Have flexibility to adjust to higher than expected levels of contamination
- Sustainable, passive system with low energy or maintenance requirements

- Removal of existing IRA Barriers (and associated impacted sediments)
- Subsurface cells to treat NAPL and dissolved phase petroleum hydrocarbons
- Infrastructure to allow contingency addition of Enhanced Bioremediation amendments
- Sheen Prevention (Oleophilic Bio Barrier)
- Embankments to protect subsurface components

Remedial System Conceptual Design

Artist's Rendition (Low Tide)

- Laboratory bench-scale study required to:
 - test ability of AquaGate + Powdered Activated Carbon (AG+PAC) to treat LEPHw, and
 - to determine sand mix to obtain optimal permeability.
- Porewater samples taken from impacted upgradient groundwater monitoring wells at refinery.

Results

- AG+PAC treated dissolved phase to below the LEPHw Risk-Based Management Target of 300 µg/L.
- AquaGate + Organoclay (AG+OC) can absorb NAPL and found to also treat (absorb) LEPHw

Sheen Treatment

- Oleophilic Bio Barrier (OBB) is a plastic geogrid encapsulated by fabric
- Allows gas to pass through while capturing any associated hydrocarbon sheen

Excavating IRA trench contaminated material

- Dark grey colour is due to anoxic conditions, not NAPL.
- Hydrocarbon odours were low to moderate.

Acknowledgements

7 year collaborative effort: Burnaby Refinery AECOM SLR Consulting (Canada)

THANK YOU!

Chris Boys Parkland Refining (B.C.) Limited 604-257-4012

