CSAP Omnibus Review 2017 Real Data – Real Results

CSAP Professional Development Webinar – March 16, 2017

CLEAN WATER CLEAN SOIL

Webinar Information

- The Webinar consists of a Adobe Connect website portal which was supplied to you as a link and where the presentations can be viewed.
- Should you wish, your computer speakers can be used to hear the presentation.
- Should you not be able to hear the presentation, please also dial in to the conference call line supplied to you (please note your line will be muted)
 - Phone Number <u>1-855-747-8824</u>
 - <u>PASSWORD 728369.</u>
- Questions should be typed in in the chat box and will be answered by the presenters at the end of the presentation.

RESTORING BC'S NATURAL VALUE

Webinar Presenters

Bob Symington, M.Sc., P.Geo.	Gandalf Consulting Ltd.	Moderator
Michael Sloan, M.Sc., P.Eng.	SLR Consulting (Canada) Ltd.	Webinar Lead
Colin Dunwoody, P.Eng.	SNC-Lavalin Inc.	Guest Speaker
Chuck Jochems, P.Eng. Peter Reid, P.Eng.	Hemmera Envirochem Inc.	Guest Speaker
Dan Walker, Ph.D.	Golder Associates	Guest Speaker
Dr. Glyn Fox, LRS SCI - Science & Standards	BC Ministry of Environment	Guest Speaker

Background

- Stage 10 (Omnibus) Amendments to the CSR updated more than 8,500 environmental quality standards that will come into effect November 1, 2017
- Errata have already been produced for noted changes to lead, aluminum, iron, sulfur, and zirconium
- How will the Omnibus updates affect applications for Certificates of Compliance or other instruments after October 31?
- The CSAP Technical Review Committee provided funding to support member firms' to poll their analytical databases and pool the results for the benefit of the wider membership, regulators, and industry

Objectives

- Summarize and clarify impacts for APs, practitioners and property owners
- Aid BC Environment in identifying potential errors
- Highlight priorities for attention

Limitations

- The Stage 10 amendments encompass many changes including addition of new substances, some of which have very low standards
- This project and this webinar address only the potential impacts from changes to a selection of currently regulated substances
 - Examples of substances not included:
 - Low volatility Polycyclic Aromatic Hydrocarbons (PAHs) with new matrix standards under Omnibus
 - Emerging substances not currently listed in the CSR
- APs should consider the overall Omnibus changes when advising their clients, based on their review

Contributors & Sources

- Received data analyses & assistance from
 - Advisian (Worley Parsons Group)
 - Golder Associates
 - Hemmera Envirochem Inc.
 - SLR Consulting (Canada) Ltd.
 - SNC-Lavalin Inc.
- Obtained consent from major industry clients Chevron Canada Limited Husky Energy Inc.

Imperial Oil Limited

Parkland Fuel Corporation

Suncor Energy Inc.

BC Ministry of Transportation and Infrastructure

Shell Canada Limited

Teck Metals Ltd.

Client- and site-specific data were not shared

RESTORING BC'S NATURAL VALUE

Scope of Work

- Organic substances listed in CSAP Vapour Guidance
 - Including concentrations in soil and groundwater
- Inorganic substances listed in general metals scan
- Evaluated key land and water uses
 - Urban Park (PL)
 - Residential (RL) vs. Residential Low-Density (RLLD)
 - Commercial & Industrial (CL/IL)
 - Drinking Water (DW)
 - Freshwater (FW)
 - Marine Water (MW)
- Detection limits, attenuation factors not considered
- Both investigation and confirmatory data included
- Results generated before Errata 2 (January 27, 2017)

Percent Exceedance Difference

- Calculated number of exceedances under current CSR vs. number of exceedances under Omnibus standards
- Used %Exceedance statistic due to different dataset sizes
 %X = # of Exceedances / # of Samples
- %Exceedance Difference = %X>Omnibus %X>CSR
- Positive %XDiff means relatively more samples exceed Omnibus standards
- Negative %XDiff = fewer exceedances under Omnibus
- Summarized results into substance categories
 - Gas Station Sites
 - Drycleaner Sites
 - Inorganics

RESTORING BC'S NATURAL VALUE

Е	Exa	mpl	е					benzene	ethylbenzene	toluene	xylenes	НДЛ
			-		Groundwater	Count		19,298	19,280	19,232	19,213	na
	Summary of	Percentage Differen	nce in E	5	DW	% difference 2017/2	2016	na	-14%	-2%	na	na
				Dataset 1	FW	% difference 2017/2		5%	na	11%	9%	na
	Groundwater	notes more exceedand	ces curre	er	MW	% difference 2017/2		na	na	na	9%	na
	Groundwater	standards					2010					
					Groundwater	Count		1,001	1,001	1,001	1,003	998
				Dataset 2	DW	% difference 2017/2	2016	0%	-11%	-3%	2%	NA
				Dataset 2	FW	% difference 2017/2	2016	6%	0%	15%	NA	0%
				-	MW	% difference 2017/2	2016	0%	0%	0%	NA	0%
					Groundwater	Count		5,176	5,177	5,176	5,176	4,571
			e		DW	% difference 2017/2	2016	0%	-28%	-5%	6%	0%
1			benzen	Dataset 3	FW	% difference 2017/2	2016	11%	0%	27%	25%	0%
				_	MW	% difference 2017/2		0%	0%	1%	25%	0%
	Groundwater DW	Count % difference 2017/2016	19,29 na		Groundwater	Count		10.827	10.845	10,861	10.801	na
Dataset 1	FW	% difference 2017/2016					040	· · ·	· · · · ·	- <u> </u>	· · · · ·	
	MW	% difference 2017/2016		Dataset 4	DW	% difference 2017/2		0%	-12%	-2%	3%	na
	Groundwater	Count	1,00	1	FW	% difference 2017/2	2016	3%	0%	9%	10%	na
Dataset 2	DW	% difference 2017/2016			MW	% difference 2017/2	2016	0%	0%	0%	10%	na
	FW MW	% difference 2017/2016 % difference 2017/2016			Groundwater	Count		41	41	41	39	35
	Groundwater	Count	5,17		DW	% difference 2017/2	0016	0%	0%	0%	0%	na
Dataset 3	DW	% difference 2017/2016										
Dataset 3	FW	% difference 2017/2016	11%	6	FW	% difference 2017/2	2016	0%	0%	0%	0%	0%
	MW	% difference 2017/2016			MW	% difference 2017/2	2016	0%	0%	0%	0%	0%
	Groundwater DW	Count % difference 2017/2016	10,82	-	DW	CSR Omnibus		5 5	2.4 140	24 60	300 90	ns ns
Dataset 4	FW	% difference 2017/2016			FW	CSR Omnibus		4000 400	2000 2000	390 5	ns 300	1500 1500
	MW	% difference 2017/2016										
	Groundwater	Count	41		MW	CSR Omnibus	·	1000 1000	2500 2500	3300 2000	ns 300	1500 1500
Dataset 5	DW	% difference 2017/2016			Typical Decreas	se (10th Percentile)		0%	-14%	-3%	0%	0%
	FW	% difference 2017/2016			Typical Increase	e (90th Percentile)		6%	0%	14%	24%	0%
	MW DW	% difference 2017/2016 CSR Omnibus	0% 5 5		95% Confidence	e Threshold (average	e)	0.5%	0.9%	0.9%	1.0%	0.0%
	FW	CSR Omnibus	4000 4		390 5	· · ·	4000 34000			s ns ns ns	ns ns	0.070
	MW	CSR Omnibus	1000 1				4400 4400			s ns ns ns	ns ns	
	2 M M	se (10th Percentile)	0%		-3%	0% 0%	-6%	0%		0% 0%	0%	
		e (90th Percentile)	6%		14%	24% 0%	0%	5%		00% 0%	7%	
	95% Confidence	e Threshold (average)	0.5%	6 0.9%	0.9%	1.0% 0.0%	0.6%	0.6%	1.1% 0	.8% 0.0%	3.8%	

Gas Station Sites - Soil

CSR	Omnibus
0.04	0.03
10	2.5
2.5	5.5
	0.04 10

Ethyl- benzene	CSR	Omnibus
RL DW	1	10
RL FW	1	150
RL MW	1	200

Toluene	CSR	Omnibus
RL DW	1.5	3.5
RL FW	1.5	0.3
RL MW	1.5	100

Xylenes	CSR	Omnibus
CL DW	20	4.5
RL FW	5	15
CL MW	50	15

Napth- thalene	CSR	Omnibus
RL DW	5	0.6
RL FW	5	0.6
RL MW	5	0.6

1,2- dibromo	CSR	Omnibus
CL DW	0.73	3
CL FW	0.73	3
CL MW	0.73	3

Organics in Soil - Gas Station Sites

Gas Station Sites -Groundwater

Organics in Groundwater - Gas Station Sites

	Р	ercent Ex	ceedance l	Differe	nce under Omnibus	- i
-1	00%	-50%	I.	0%	50%	100%
benzene				-		
ethylbenzene				3		_
toluene	[<u> </u>		_ 1
xylenes						
VPH				1		
→ MTBE				3		
naphthalene	[–		_
1,2-dibromoethane						
1,3-butadiene						
1,2,4-trimethylbenzene	[8		
	1,3,5-	CSR	Omnibus	 		_
isopropylbenzene (cumene)	trimethyl		40		■ Typical Increase	
methylcyclohexane			10	8	Typical Decrease	Li
n-decane	[<u> </u>	. , p. ca. 2 ca. 6000	
n-hexane				1		— i

Benzene	CSR	Omnibus
Drinking	5	5
Fresh	4000	400
Marine	1000	1000
Ethyl- benzene	CSR	Omnibus
DW	2.4	140
FW	2000	2000
MW	2500	2500
Toluene	CSR	Omnibus
DW	24	60
FW	390	5
MW	3300	2000
Xylenes	CSR	Omnibus
DW	300	90
FW		300
MW		300
МТВЕ	CSR	Omnibus
DW	15	95
FW	34000	34000
MW	4400	4400
Napth- thalene	CSR	Omnibus
DW		80
FW	10	10
MW	10	10
1,2- dibromo	CSR	Omnibus
DW	0.34	0.08
1,3- butadi	CSR	Omnibus
DW	6.1	0.045

Society of Contaminated Sites Approved Professionals of British Columbia

Gas Station Sites - Vapour

Organics in Vapour - Gas Station Sites

Drycleaner Sites - Soil

Organics in Soil - Drycleaner Sites

Drycleaner Sites - Groundwater

Organics in Groundwater - Drycleaner Sites

Drycleaner Sites - Vapour

Organics in Vapour - Drycleaner Sites

		Percent Exceedance Difference under Omnibus					
	-100%	-50%	0%	50%	100%		
1,1,1-trichloroethan 1,1-dichloroethan			8	■ Typical Increase ■ Typical Decrease	-		
 1,1-dichloroethylen 	e						
 1,2-dichloroethan carbon tetrachlorid 							
chloroethan			8				
	n 📃		<u> </u>				
cis-1,2-dichloroethylen	e		8				
tetrachloroethylen	e						
Ins-1,2-dichloroethylen							
trichloroethylen vinyl chlorid							

1,1-DCE	CSR	Omnibus
AL/PL/RL	1	200
CL	1	600
IL	2	2000
EDC	CSR	Omnibus
AL/PL/RL	0.4	5
CL	1	15
IL	3.5	45
Carbon Tetrachlor	CSR	Omnibus
AL/PL/RL	0.65	1.5
CL	2	5
IL	6	15
Chloro- form	CSR	Omnibus
AL/PL/RL	1	100
CL	1.5	300
IL	4	900
Cis-1,2- DCE	CSR	Omnibus
AL/PL/RL	20	60
CL	60	200
IL	200	550
PERC	CSR	Omnibus
AL/PL/RL	600	40
CL	2000	100
IL	5500	350
TCE	CSR	Omnibus
AL/PL/RL	0.5	2
CL	0.5	6
IL	1	20

Society of Contaminated Sites Approved Professionals of British Columbia

of British Columbia

Summary

- *Remember*: this review represents only one aspect of the changes in the Stage 10 standards
- In soil there are exceedance increases and decreases
 - Benzene standards are more stringent where DW, FW applies
 - TCE standard less stringent for CL/IL sites
- Groundwater has the most significant increases
 - 1,2-dibromoethane; 1,3-butadiene and several metals more stringent
 - speciation of Total Chromium may decrease exceedances under Omnibus if Cr+3 is dominant
 - many of the increased exceedances are related to applicability of DW standards
- Vapour increases: 1,2-dibromoethane and 1,3-butadiene
 - less stringent standards for drycleaner VOCs

