CONTAMINATED SITES INVESTIGATIONS IN FRACTURED BEDROCK SETTINGS - INFORMATION AND EXAMPLES OF WHEN AND HOW TO INVESTIGATE THEM

CSAP Fall Professional Development Workshop

November 23, 2016 - Vancouver, BC

Presented by: Stephen Munzar and Annette Mortensen

OUTLINE

- Introduction
- Regulatory Requirements
- Important Considerations
- Components of Bedrock Investigations
- Techniques
- Data Analysis
- Use of Conceptual Site Models
- Summary and Conclusions

Why investigate bedrock?

- Regulatory requirements
- Many potable water supply wells are constructed in bedrock
- Flow/transport through bedrock can act as a significant pathway to sensitive receptors
- Groundwater flow and contaminant transport behave differently in bedrock

INTRODUCTION (CONT'D)

Some common misconceptions about bedrock:

- Bedrock is an an impermeable barrier
- Groundwater does not flow in bedrock
- Contaminants do not migrate in bedrock
- Bedrock is not fractured

INTRODUCTION (CONT'D)

Several conceptual models for fractured flow:

Dual porosity

2. Single fracture

3. Equivalent porous media

REGULATORY REQUIREMENTS

When are Bedrock Investigations Required?

- Regulatory requirements:
 - Ensure that groundwater at a site is suitable for current and future uses and is of adequate quality to protect adjacent water uses
 - If contamination is identified or suspected, site investigations of all relevant media for each PCOC are required
 - Define the nature and extent of contamination to provide information necessary for conducting a risk assessment and/or develop a remediation plan

REGULATORY REQUIREMENTS

How to Investigate Bedrock

- No "specific" ministry guidance on bedrock investigations
 - Protocol 21, Water Use Determination
 - Technical Guidance 6, Assessment of Hydraulic Properties for Water Use
 Determinations
 - Technical Guidance 8, Groundwater Investigation and Characterization
 - Technical Guidance for Contaminated Sites. Groundwater Investigation in Site Assessment, Golder, June 2010
 - Fractured Bedrock Field Methods & Analytical Tools, SABCS, October 2010
- Advice of a qualified professional should be obtained to plan and conduct a bedrock aquifer investigation

Water Use Determinations

- Bedrock
 - Drinking water use

PROTOCOL 21

Drinking Water Use Determinations in Bedrock

- DW automatically applies to bedrock units when:
 - Current use within 500 m
 - Aquifer mapped in the BC Water Resource Atlas

Ministry of

Environment

BRITISH

Future Drinking Water Use Evaluation in Bedrock

- Bedrock investigations required when:
 - Contamination in soil and groundwater
 - > DW standards extends to the bedrock surface

PROTOCOL 21

Future Drinking Water Use Evaluation in Bedrock

- Bedrock investigations must include:
 - Hydraulic conductivity

- $K_{geomean}$ if ≥ 6 wells

- K_{max} if ≤ 5 wells

- Yield (sustain pumping at 1.3 L/min)
- Utilize nearby data:

• TG6: Bedrock data within 500 m

• Imap: Borehole Map

PROTOCOL 21

Natural Confining Barriers

- P21 definition: NCB's are unconsolidated geological units
- Bedrock as a natural confining barrier
 - Where bedrock investigations indicate that part of the bedrock unit operates as a natural confining barrier protecting the deeper more permeable bedrock unit, a site-specific director's determination of water use can be obtained
 - Detailed bedrock investigation
 - Contaminant free
- Preapproval to not delineate
 - Not practicable / feasible to delineate

SOME IMPORTANT CONSIDERATIONS

- Requires greater evaluation of the geology and hydrogeology e.g. lithology, porosity, structure (fracturing), hydraulic properties, flow
- May require specialized drilling and well installation methods
- Greater training and management of field staff
- Staff with specialized expertise in geology and hydrogeology
- If planned well can be completed relatively economically

COMPONENTS OF BEDROCK INVESTIGATIONS

Main Components:

- 1. Geology and hydrogeology data collection
- 2. Data analysis
- 3. CSM development
- 4. Additional investigation (if required)
- 5. CSM refinement

BEDROCK INVESTIGATION GOALS

- Define the geology (lithology and structure)
- Identification of flow features (primary and secondary porosity e.g. fractures)
- > If possible, determine which fractures are flowing
- Screen over the flowing fractures (if discrete fracture flow model)

Pores in unconsolidated Sedimentary Deposits e.g. Sand

Joints in Hard Rock e.g. Granite, Quartzite

TECHNIQUES

- Desktop research (review regional geology maps)
- Map the surface geology at outcrops:
 - Lithology and structure (fracture identification, fracture density, orientation - strike/dip)
- Collect rock samples for lithology

TECHNIQUES (CONT'D)

- Bedrock drilling methods:
 - ODEX, Air Rotary, Sonic all provide an "open" borehole
 - Diamond drilling provides open borehole and rock core
- Core drilling good option if not performing borehole geophysics to find fractures

TECHNIQUES (CONT'D)

- Borehole geophysics:
 - Temperature, resistivity, caliper logs
 - Acoustic and optical televiewer
 - Flow meter

 Good option on "open" boreholes to identify fractures

TECHNIQUES (CONT'D)

- Monitoring well installation:
 - Slotted PVC, Flute Sampler, Solinst Packers/Waterloo Multilevel Sampling, CMT, Westbay Multilevel Systems
- Hydraulic testing:
 - Slug tests / packer tests / pumping tests
- Lateral and vertical hydraulic head distributions i.e. flow determination
- Groundwater chemistry sampling
- Tracer studies

DATA ANALYSIS

- Determine lithology and porosity
- Define structural geology (e.g. number of fracture sets/orientations, etc.)
- Geophysical data which fractures are flowing, directions and rates
- Hydraulic data fracture transmissivity/conductivity / connectivity gradients and flow directions, probable fracture model type

CONCEPTUAL MODEL DEVELOPMENT

- Geologic model
- Physical hydrogeology
 - Hydrostratigraphy, flow boundaries, flow directions, hydraulic conductivities, hydraulic gradients and velocities/fluxes, recharge/discharge areas
- Contaminant hydrogeology
 - Source area(s), source properties (physical and chemical), release mechanisms, transport mechanisms

BEDROCK INVESTIGATION

GEOLOGY DATA GATHERED

COTE 6 ENVIRONMENTAL

Recharge REFINED CSM **Boundary** UST Sand Sand Aquifer **FLOW** Residual **Dissolved Phase NAPL** PATHLINES Granite **Fractured Bedrock** Aquifer

ENVIRONMENTAL

Unconsolidated Soil and Bedrock Contaminated Site Adjacent to Marine Environment

SUMMARY AND CONCLUSIONS

- Several circumstances when bedrock should be investigated
- Investigations can be done relatively economically
- Requires thorough evaluation of geology and hydrogeology
- Flow and transport in bedrock often behaves very differently
- Development of CSMs can assist in establishing the flow and contaminant transport regime and remedial planning
- Can be a significant pathway to a receptor

THANK YOU! QUESTIONS?

Presenter Contact Information:

Stephen Munzar MSc, PGeo

Senior Hydrogeologist / Partner

Coreó Environmental Ltd.,

smunzar@core6.ca

Annette Mortensen, Phd, PEng

Senior Contaminated Sites Officer

BC Ministry of environment

Annette.Mortensen@gov.bc.ca

