

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Performance Assessment Committee Update and Lessons Learned

Chuck Jochems, P.Eng. Chair, Performance Assessment Committee

WWW.CSAPSOCIETY.BC.CA

Chair: Chuck Jochems, P.Eng.

Chair: Chuck Jochems, P.Eng.

Chair: Chuck Jochems, P.Eng.

Delegated Members:Jason Christensen, P.Eng.

Chair: Chuck Jochems, P.Eng.

- Jason Christensen, P.Eng.
- Gary Hamilton, P.Geo.

Chair: Chuck Jochems, P.Eng.

- Jason Christensen, P.Eng.
- Gary Hamilton, P.Geo.
- Duncan McDonald, P.Eng.

Chair: Chuck Jochems, P.Eng.

- Jason Christensen, P.Eng.
- Gary Hamilton, P.Geo.
- Duncan McDonald, P.Eng.
- Stegan Quaglia, R.P.Bio.

Chair: Chuck Jochems, P.Eng.

- Jason Christensen, P.Eng.
- Gary Hamilton, P.Geo.
- Duncan McDonald, P.Eng.
- Stefan Quaglia, R.P.Bio.
- Tara Siemens Kennedy, P.Chem.

CSAPSOCIETY.BC.CA

• Overview of PAs and Submissions YTD

Overview of PAs and Submissions YTD ENV requested Focused Reviews

Overview of PAs and Submissions YTD
ENV requested Focused Reviews
PA Process Overview

- Overview of PAs and Submissions YTD
- ENV requested Focused Reviews
- PA Process Overview
- Administrative Reminders

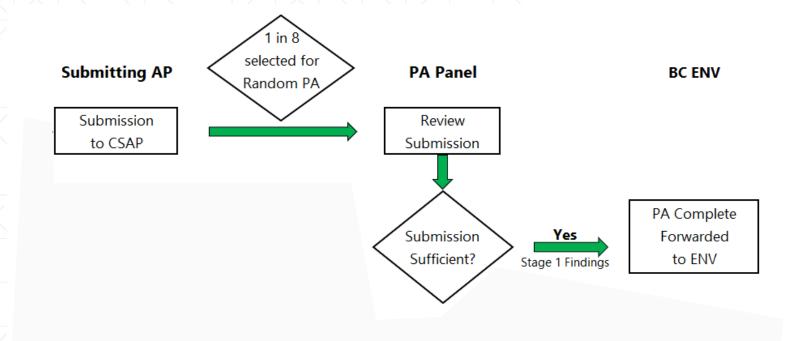
- Overview of PAs and Submissions YTD
- ENV requested Focused Reviews
- PA Process Overview
- Administrative Reminders
- PA Lessons Learned

- Overview of PAs and Submissions YTD
- ENV requested Focused Reviews
- PA Process Overview
- Administrative Reminders
- PA Lessons Learned
- Review Services Committee (RSC) Update

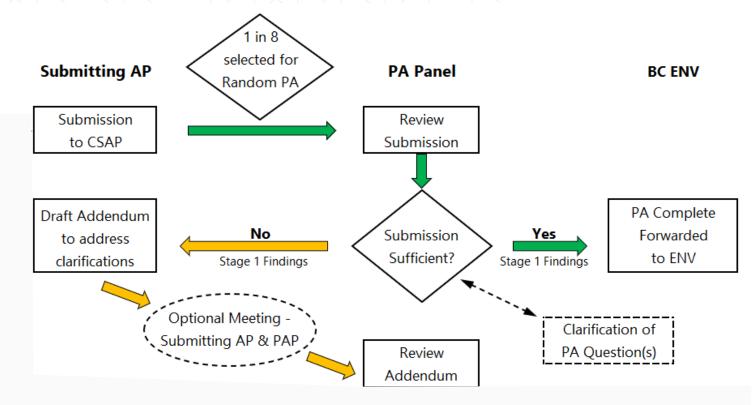
PAs and Submissions YTD

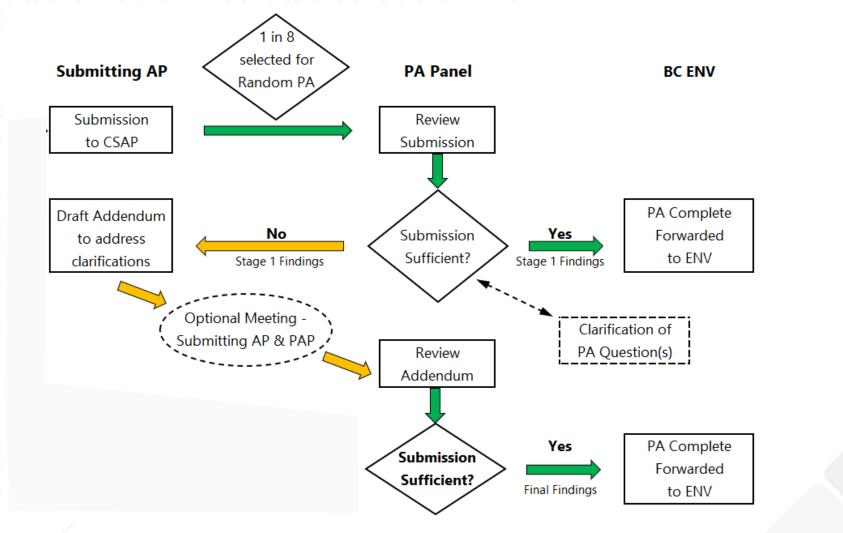
Summary of PAs to date (as of Oct 27, 2023)

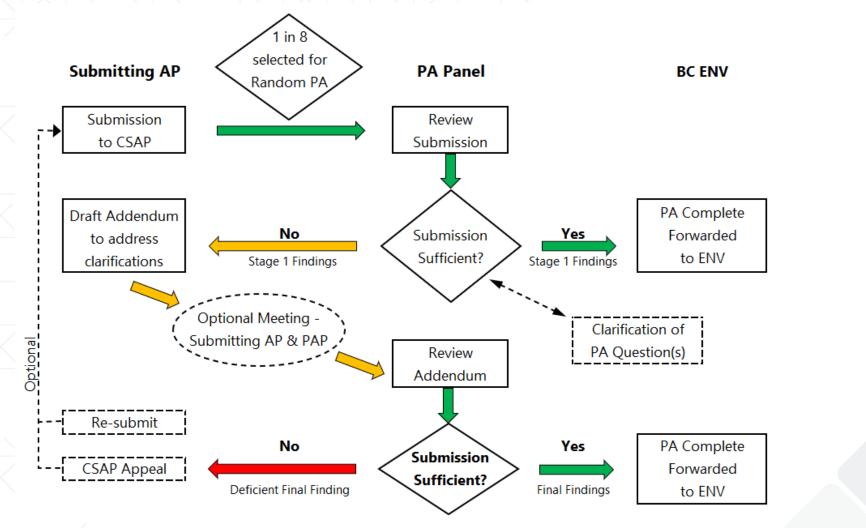
	ltem	Number	Notes				
	Active PAs	9					
1	Sufficient	6	4 at Stage 1 Findings				
	Deficient	0					
7	Total PAs	15	11 random and 4 non-random				


Total of 84 Submissions received by CSAP
1 in 8 frequency (1 in 6 frequency - NRPAs included)

PAs and Submissions YTD


- •4 Non-random PAs
 - 1 Site-specific
 - 1 Discipline Committee measures
 - -1 from Focused Review
 - 1 at request of ENV
- •4 Focused Reviews
 - 3 at request of ENV
 - -1 from Detailed Screening


ENV requested Focused Reviews • ENV requests are referred to PAC Focused Review is completed by a DM SDM given opportunity to review FR findings for 10 days • If SDM agrees, FR findings is forwarded to Submitting AP • If SDM recommends NRPA, then results of FR are not shared


CSAPSOCIETY.BC.CA

CSAPSOCIETY.BC.CA

F

CSAPSOCIETY, BC, CA

Administrative Reminders

- Addendums are to be addressed to clients, not CSAP or PAC
- Final Addendums become part of the report record in support of Certification Documents (i.e., draft document + SoSC)
- ENV can request Addendum after the submission leaves CSAP at SDM's discretion
- Be mindful of deadlines noted in DM Letters, as several reminders have been issued recently

Administrative Reminders

- It is the Submitting AP's responsibility to confirm the supporting documents are complete for a Submission
 - For example, reports include all attachments: - tables, figures, borehole logs, appendices, etc.
- Recently, ENV required a re-submission as a supporting report was missing information

)	Category	Item	Details				
	Stage 1 PSI	Missed PCOCs	Only metals were identified as PCOCs in suspect fill and did not include other common parameters.				
\times	Stage 2 PSI	PCOCs not analyzed	Not all PCOCs identified in Stage 1 were tested for, with no rationale provided.				
\times	Stage 2 PSI	Soil vapour screening	r Non-fuel VOCs refined based on ND concentrations in soil and groundwater, but not all parameters analyzed. Screenin also based on field observations, with no supporting data.				
	Stage 2 PSI	Inadequate investigation	APEC assessment considered inadequate due to investigation locations (not worst-case location) and density.				
×	Standards	Soil vapour	Report indicated vapours passed based on ND naphthalene in soil. However, naphthalene concentrations were detected, and soil vapour modelling failed to meet applicable standard.				
\times	ENV Policy	Not eligible for P6	Contaminated fill extended off property but no P6 pre- approval was obtained for part of a site.				

	Category	ltem	Details
\times	Standards	Soil	Site-specific standard (SSS) calculated using Protocol 2 and 27. However, SSS was questioned given some rationale was not very conservative. Bulk concentrations in soil were not collected at the same time in soil samples used for P27 leachate testing and results from previous investigation were relied upon. Flat gradient calculated using nearest cm groundwater elevations as opposed to mm, which would have provided a more conservative gradient for groundwater flow calculations.
\times	DSI	Delineation	Show vertical delineation of groundwater on cross-sections.
~	Remediation	Adequacy	Show investigation sample exceedance locations (i.e. contamination) on CoR plans and cross-sections to confirm removal and remediation.

	Category	ltem	Details
- 	ENV Policy	Protocol 13 -Precluding Conditions	Aquifer stratigraphy at site described as 'Sand, gravel, cobbles with some boulders'. Section 3.2 of Protocol 13 has a precluding condition "In addition, this protocol must not be used at contaminated sites where any of the following conditions are present: • very high permeability soil (for example, cobbles)". It
× _			also states "A screening process, including a written discussion with detailed rationale, must be used to determine if any precluding conditions may be present at the site. The written discussion must demonstrate consideration of each
/			precluding condition and provide rationale for determining
			applicability and supporting site data". The Submitting AP rationalized laminar flows exists at the site, not turbulent flow. ENV indicated that a proponent could provide data and supporting rationale to demonstrate that the precluding condition is not considered applicable to the site.
			ENV pre-approval would not be necessary.

Category	ltem	Details
Risk Problem Formulation	Current & Future Scenarios	Ok for HHRA. Clarification requested on whether the ERA based on current conditions adequately protects future conditions. Response to S1 Findings was that there were no improvement plans for the park-like site, which was considered adequate.
Problem Formulation	COPC Screening	The full (post-remedial) dataset relied upon for screening and statistics was initially missing, which may be a common issue.
Risk Management	Risk Controls	Initial report contained risk controls 1) against potable use of groundwater and 2) maintain 'clean soil capping' on a municipal roadway portion of the site. It was later clarified these risk controls were not been supported by the assessment findings and were not necessary. Lesson to QPs is to avoid putting forth risk controls unsupported by the assessment findings.

RSC Update

• Through the RSC, CSAP reviews Annual Reports and similar documents that are typically produced to satisfy Director's requirements in Schedule B conditions.

- A reminder that RSC does not review Annual Reports associated with Scenario 3 release (i.e., SDS-related) requirements. Those types of reports should be submitted to the Site Identification group at ENV (<u>SiteID@gov.bc.ca</u>).
- We encourage all practitioners to familiarize themselves with Application Types to be sent CSAP vs. ENV for review, as noted on the **RSC webpage**.

RSC Update

- Last year, most submissions reviewed by RSC were associated with AIPs that had been issued in the past 2 to 3 years.
 - The details required in an AIP Annual Report are specified in Schedule B (i.e., remedial progress compared with the Remedial Plan schedule).
 - We encourage submitters to directly speak to those requirements in reporting to avoid CSAP clarification questions during the review process.

CSAP Q&A for Members

• December 2023 Launch anticipated

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Detailed Screening Common Errors and Omissions

Tara Siemens Kennedy, MET, P.Chem. Chair, Detailed Screening Sub-committee

WWW.CSAPSOCIETY.BC.CA

Detailed Screening Spreadsheet – Updated 2021 Summary Worksheet
 CSAP DS Checklist
 SoSC
 Regulatory Considerations
 Consultations

Available on CSAP website (appendix in CSAP Administrative and Detailed Screening Guidance)

SoSC Section 4.2 Site Conditions, Water Use

Include explicit statements to address all water uses

Address both current and future water use

Include sufficient details to show compliance with P21 for every geological unit exempted from a water use

SoSC Section 4.4 Applicable Numerical Standards

Soil (CSR Schedule 3.1):									
Property	CSR Land Use								
		AL	PL	RL _{LD}	RL _{HD}	CL	IL	Other	
Subject Site	Current								
	Proposed								
Receiving site (if completed in su	upport of a Contaminated Soil Relocation Agreement)								
Offsite impacted property / management area									
Has a Protocol 2	e-specific) or Protocol 4 (background) standard been applied?			Yes Substances				inces #	

Substances remediated evaluated in soil for Residential soil use:

To meet local background concentrations:

<List substances remediated to meet local background concentrations.>

Include substances evaluated to BG or P2 SSS (Section 4.4 and 4.6 of SoSC and in Schedule C) In Section 4.6 of SoSC, include note indicating evaluated to BG or SSS (i.e., not carried forward as COC)

Revise Schedule C template text to indicate evaluated to BG or SSS

SoSC Section 4.4 Applicable Numerical Standards

Vapour (CSR Schedule 3.3): (Check all that apply)

	AL, PL, RL	CL	IL	Parkade	Other
Soil Vapour					

Notes (if other is specified above, include description of assumptions for both current and future development of the site that the selected vapour attenuation factors are based on)

Address both current and future vapour use and provide details on how VAFs were selected

SoSC Section 4.6 AEC and Contaminant Summary

						Extent of Co	ontamination		
		AEC / APEC # (Use same #s as for APECs in Table above)	Contaminant of Concern	Medium (e.g., soil, groundwater, sediment, vapour, surface water, other)	Maximum Measured Concentration (indicate units)	Area (m²)	Depth Range (m)	Add	Delete
								+	-
								+	-
-6	\leftarrow / -	Notes (e.g. site type,	classification, relevan	nt approvals etc.):					

Include Site Type (i.e., Type 1 or 2 for risk-based submissions)

Include Site Risk Classification Include background soil or groundwater levels set under P4 or P9, or SSS

SAPSOCIETY.BC.CA

Spelling of Substances

Schedule C and All Sections of the SoSC

Spelling of substances **MUST** match the CSR Schedules

A few tips:

- Substances are not capitalized per CSR schedules
- Remember xylenes (Sch 3.1) vs. xylenes, total (Sch 3.2 + 3.3)
- Numbering follows chemical name (e.g., dichloroethane, 1,2-)
- NAPL is listed as 'non-aqueous phase liquids' in the CSR Schedules 3.1 and 3.2
- Non-regulated substances do not get listed in Schedule C
 Check that CAS numbers are accurate

Document List in SoSC and Schedule D

 BC ENV webpage "Preparing Draft Certification Documents for the Director" indicates that in addition to technical reports, the following must be included in Schedule D:

...Summary of Site Condition, performance verification plans, communication records, preapprovals under Protocol 6 and any other authorizations, approvals or director's decisions that may be applicable to the contaminated site.

When applying for a Certificate of Compliance after an Approval in Principle was issued, list all relevant documents from the Approval in Principle in the Certificate of Compliance.

Questions?

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Protocol 2 Site-Specific Standards

Development and Use of the CSAP P2 SSS GPM Relief Book Spreadsheet Tools

Erin Robson, P.Eng., CSAP & Ilya Biniowsky, P.Geo., SLR Consulting

WWW.CSAPSOCIETY.BC.CA

Presenters:

Erin Robson, Numerical Standards CSAP and Contaminant Hydrogeologist with SLR Consulting.

- Based in Kamloops, with 23 years of experience in contaminated site assessment and remediation in BC.
- Developed P2 SSS for over 20 projects across BC since 2017.

Ilya Biniowsky, Senior Contaminant Hydrogeologist with SLR Consulting.

- Based in Vancouver, with 21 years of experience in contaminated site assessment and remediation in BC.
- SLR Data management lead and CSAP GPM relief tool developer.

P2 SSS Resources

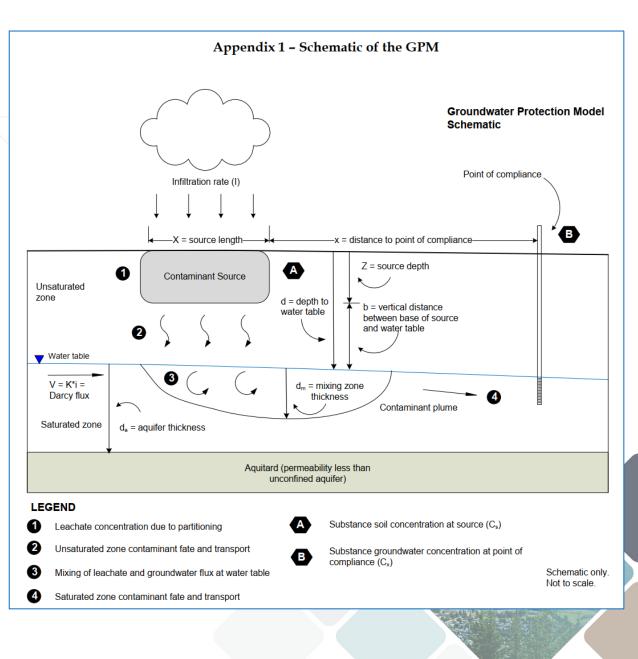
- CSAP PD Webinar September 15, 2021: Getting to Know the Protocol 2 Site-Specific Numerical Soil Standards
 - <u>https://csapsociety.bc.ca/members/pd-webinar/</u>
- Protocol 2 Site-Specific Numerical Soil Standards
- Protocol 27 Soil leachate Tests for Use in Deriving Site-Specific Numerical Soil Standards
- Technical Guidance 13 Groundwater Protection Model
- Technical Guidance 24 Site-Specific Numerical Soil Standards Model Parameters
- CSR Schedule 3.1 Part 1 Matrix Numerical Soil Standards

The Project

Objectives:

- To raise awareness of the relief that may to obtained using P2 SSS vs CSR Matrix numerical standards
- To create a practical reference for practitioners

Deliverables:


- Memo summarizing key points
- Excel tool to bookend the range of useful modified input parameters

The Model

- 4 processes
- 18 modifiable inputs
- 40 CSR-Regulated Substances

Study focused on 6 inputs:

- Infiltration (I)
- Fraction of organic carbon (foc)
- Distance to point of compliance (x)
- Vertical distance between base of source and water table (b)
- Average linear velocity (v)
- Soil pH

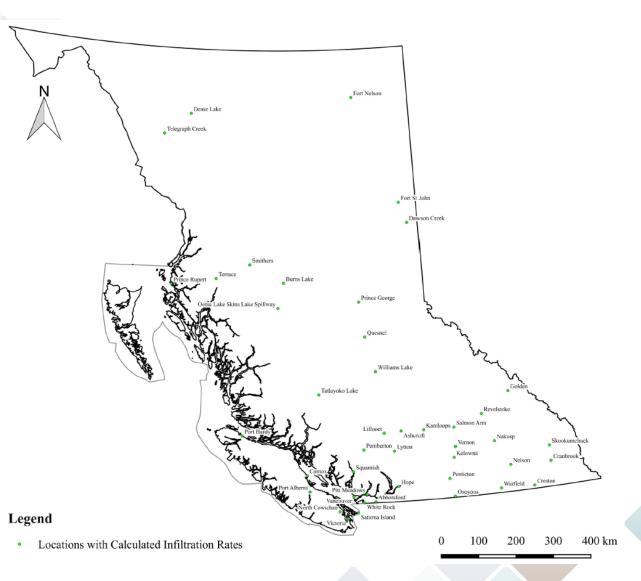
The Outcome

- Technical Memo: Using the GPM and P2 SSS
 Overview, guidance and instructions
- Four Separate Excel Spreadsheet Tools
 CSAP P2 SSS GPM Relief Book WLn_WLr.xlsx
 CSAP P2 SSS GPM Relief Book AL_PL.xlsx
 CSAP P2 SSS GPM Relief Book RLId_RLhd.xlsx
 CSAP P2 SSS GPM Relief Book CL_IL.xlsx

Key Takeaways

Organics:

- Inputs that enhance bioattenuation
 - foc, b (d-Z)
 - low v
- Inputs that increase dilution and dispersion
 - X
 - high v
- Organics that readily degrade will respond more to modifications
 - Benzene vs PERC


Inorganics:

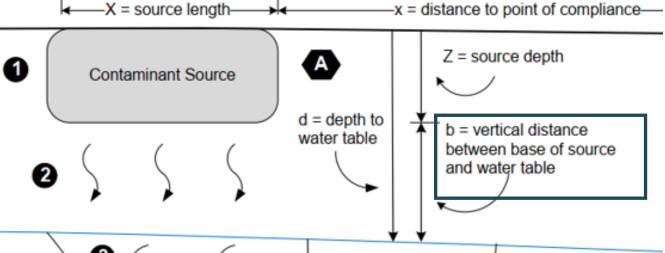
- Greatest relief with inputs that increase dilution and dispersion
 - X
 - high v
- pH has largest effect and must be site-specific for all modifications (not optional)
- pH may enhance or diminish other mods

Inputs – Infiltration Rate

- Relative model sensitivity:
 - LOW (organics)
 - HIGH (inorganics)
- Simple to execute
- Allowable: <u>></u> 80 mm/yr
- Source: P2 Appendix I Table 1 values
- 44 Urban centres listed
- Study used 13 discrete infiltration rates paired with 8 P4 background regions

Inputs – Fraction of Organic Carbon

- Relative model sensitivity: HIGH (organics only)
- Allowable: 0.001 0.050
- Source: Site-specific data
- Limitations: Only <u>one</u> site-specific foc value to represent the entire site
- Higher end foc values likely only represent peat/muskeg **Need a sufficiently robust CSM to justify selected foc value**


Inputs – Distance to Point of Compliance (x)

- Relative model sensitivity: HIGH (organics and inorganics)
- Allowable: 10 500 m
- Limitations on use!
 - DW / IW / LW if site GW meets the applicable standard, then x can be modified to lateral distance from:
 - Source -> Down Gradient Property Boundary
 - AW if GW at the down gradient property boundary meets the applicable AW standard, then x can be modified to lateral distance from:

• DG Property Boundary ->10 m from the HWM of the receptor **Site-Specific Source Dimensions are also required**

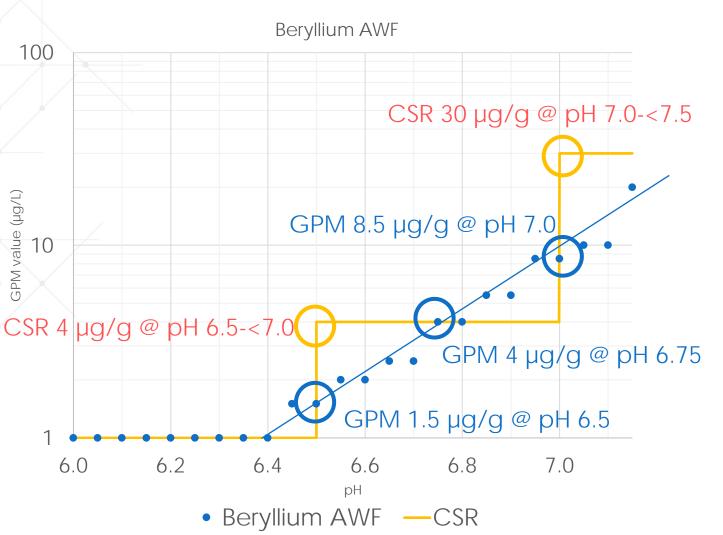
Inputs – Depth from Source to Water Table (b)

- Model sensitivity to
 b = d-Z: HIGH
 (organics only)
- Source: Site-specific data

 Site-Specific source dimensions are required

Calculating Source Dimensions

- Source dimensions (length, width, depth) prescriptive methods for organic and inorganic sources must be followed – <u>P2 Section 5.1.1</u>
- PHC source zone is defined by concentrations of VHs₆₋₁₀ > 100 ppm or either EPHs₁₀₋₁₉ or EPHs₁₉₋₃₂ > 1000 ppm
- Non-PHC source zones are defined by either:
 - Soil concentrations > Schedule 3.1 Part 1 standards,
 - Soil concentrations > a SSS derived by modification of select allowable GPM input parameters (e.g. I, porosity, foc, pH, K, i), or
 - Soil concentrations > Protocol 4 background


Inputs – Groundwater Velocity (v)

- Model sensitivity: HIGH (organics and inorganics)
- Influences various model processes differently
 - Low $v \rightarrow$ higher attenuation of organics
 - High v → higher dilution and dispersion effects for both organics and inorganics
- Calculated from hydraulic conductivity (K), gradient(i) and effective porosity
- Source (per TG24): Site-specific data for K and i in the shallowest unconfined flow system
- Cannot be modified if perched water tables present

Inputs – pH

- Model sensitivity: HIGH (inorganics) but already built into CSR
- CSR matrix ranges are modelled using the midpoint of the range
- CSR range for 6.5-7.0 is modelled using <u>6.75</u>
- GPM default of pH=6.5 can result in lower modelled SSS vs CSR

Inputs – pH

- Typically, High pH \rightarrow High SSS
 - PCP/Selenium: High pH \rightarrow Low SSS
- Can affect other modifications as site-specific pH is required
- Unlike CSR matrix standards, only <u>one</u> site-specific pH value to represent the entire site

Need a sufficiently robust CSM to justify selected pH value

Processes and GPM Parameters

Process Stage	Biophysical Processes	GPM Parameter	Useful Range	Parameter Effect on GPM SSS
1. Leachate Generation	Partitioning	fraction of org. carbon (foc) Soil pH	0.005 – 0.05 5 - 9	↑ organics ↑(metals)/↓(PCP)
2. Unsaturated Fate/Transport	Bio- attenuation Dispersion Retardation	Infiltration (I) Depth from source to water table (b = d-Z) fraction of org. carbon (foc) Soil pH	80 - 550 mm/yr 0 – 3.5 m 0.005 – 0.05 5 – 9	↓ ↑ organics ↑ organics ↑(metals)/↓(PCP)
3. Mixing Leachate/GW	Dilution	Infiltration (I) GW velocity (v)	80 - 550 mm/yr 30 – 250 m/yr	$\stackrel{\downarrow}{\uparrow}$
4. Saturated Fate/Transport	Bio- attenuation Dispersion Retardation	fraction of org. carbon (foc) Soil pH GW velocity (v) Distance to Pt. of Compliance (x)	0.005 – 0.05 5 – 9 5 – 30 m/yr 10 – 500 m	↑ organics ↑(metals)/↓(PCP) ↑ organics ↑

Notes:

↑ - increasing parameter increases the GPM SSS value

↓ - increasing parameter decreases the GPM SSS value

Relief Definition

- No Relief
 - GPM result ≤ CSR GW Pathway Std
 - CSR GW Pathway Std > CSR Mandatory Std.
 - E.g. Cu @pH=6.4, AWF

MATRIX 11 - NUMERICAL SOIL STANDARDS¹ COPPER (CHEMICAL ABSTRACT SERVICE NUMBER 7440-50-5

COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN Note													
									Note				
۲ Site-specific Factor	Wildlands Natural (WL _N)	Wildlands Reverted (WL _R)	4 Agricultural (AL)	Urban Park (PL)	Residential Low Density (RL _{LD})	Residential High Density (RL _{HD})	Commercial (CL)	Industrial (IL)	2				
HUMAN HEALTH PROTECTION Intake of contaminated soil	7 500	7 500	3 500	7 500	3 500	7 500	25 000	700 000	3				
$\begin{array}{l} Groundwater used for drinking water \\ pH < 5.0 \\ pH 5.0 < 5.5 \\ pH 5.5 < 6.0 \\ pH 6.0 < 6.5 \\ pH 6.5 < 7.0 \\ pH \ge 7.0 \end{array}$	250 500 2 000 10 000 50 000 100 000	4 4 4 4 4 4											
ENVIRONMENTAL PROTECTION Toxicity to soil invertebrates and plants	85	150	150	150	150	300	300	300					
Livestock ingesting soil and fodder			150										
Major microbial functional impairment			350						5				
Groundwater flow to surface water used by aquatic life Freshwater pH < 5.5	75	75	75	75	75	75	75	75	4,6,7				
pH 5.5 - < 6.0	100	100	100	100	100	100	100	100	4,0,7				
pH 6.0 - < 6.5 pH 6.5 - < 7.0	700 3 000	4,7											

Toxicity to Inverts. And Plants 300 µg/g

AWF (@pH 6.4) <mark>700 µg/g</mark>

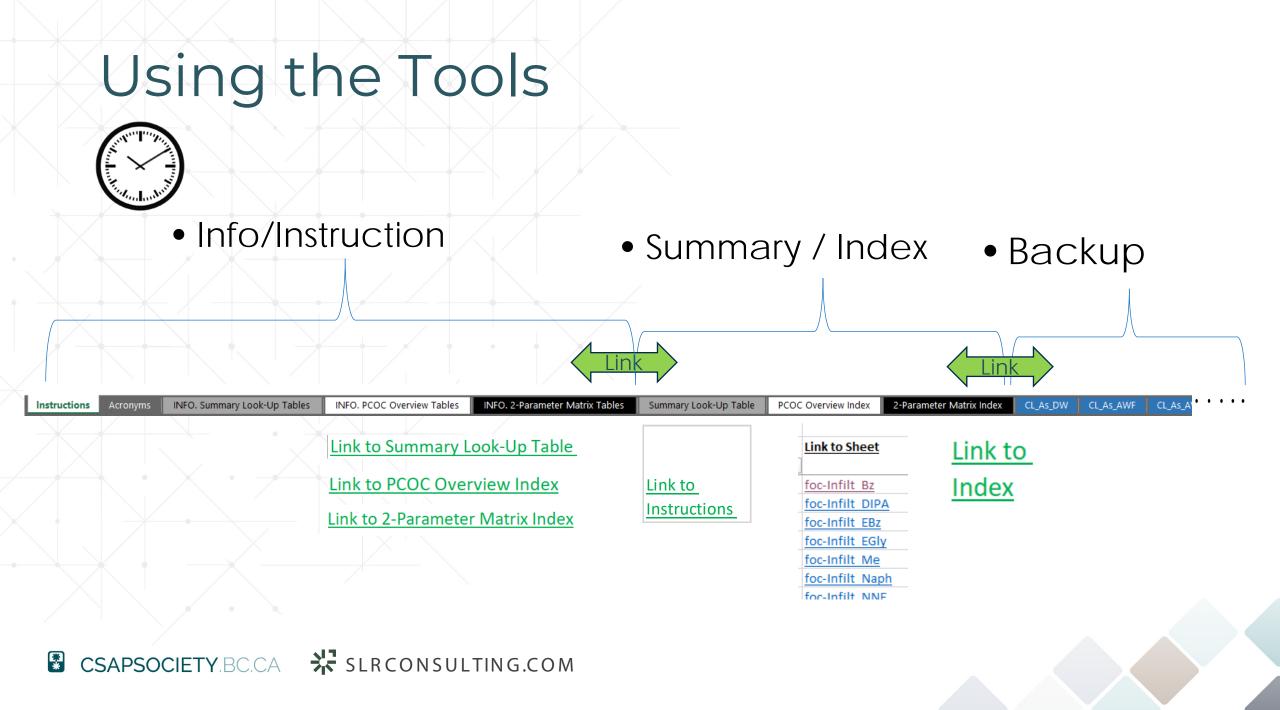
Relief Qualifiers

- Constrained by minimum mandatory CSR Standard
 - GPM > CSR mandatory Std
- Not constrained by minimum mandatory CSR Standard GPM < CSR mandatory Std

Summary Relief Ranges

GPM result that exceeds the BC CSR Standard but exceeds the minimum mandatory standard GPM result that exceeds the BC CSR Standard but does not exceed the minimum mandatory standard

PCOC Overviews


N = No Relief

GPM relief but limited by mandatory factors: t=toxicity to invertebrates and plants; i=intake of contaminated soil; L=livestock injestion; M=microbial function Y = GPM Relief

CSAPSOCIETY.BC.CA SLRCONSULTING.COM

2-Parameter Matrices

• Using the Tools Summary Lookup Table

Table of Groundwater Protection Model (GPM) Parameter Ranges where GPM Results are Greater than BC CSR Schedule 3.1 Part 1

GPM Parameter Relief Ranges

Link to Instructions			Parameter →	Infiltratio (m/yr)	on Rate	Fraction Organic (-)		Distance to Compliance (m)		Depth fro Source t Table (m)		Average Ground Velocity (m/yr)	water	pH of Soi (-)	a
			Abbreviation →	1		foc		x		b		v		pHsoil	
				lower	upper	lower	upper	lower	upper .	lower	upper	lower	upper .	lower	upper
Land Use 1	PCOC 1	Groundwater Use	Link to Sheet 1			2					-			<u></u>	
Υ.	·	1		v v	X 0	8 💌		10	· · · ·	•			V 01		
CL	Arsenic	DW	CL AS DW	0.08	0.1	no relief	no relief	500	500	no relief	no relief	200	250	no relief	no relief
CL	Arsenic	AWF	CL AS AWF	0.08	0.1	no relief	no relief	500	500	no relief	no relief	200	250	no relief	no relief
CL	Arsenic	AWM	CL AS AWM	0.08	0.45	no relief	no relief	60	500	no telief	no relief	50	250	8	9
CL	Barium	DW	CL Ba DW	0.08	0.4	no relief	no relief	80	500	no relief	no relief	50	250	no relief	no relief
CL	Barium	AWF	CL Ba AWF	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief
CL	Barium	AWM	CL Ba AWM	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief
CL	Benzene	DW	CL BZ DW	0.08	0.4	0.01	0.05	20	500	0.5	3.5	5	250	no relief	no relief
CL	Benzene	AWF	CL BZ AWF	0.08	0.5	0.01	0.05	20	500	0.5	3.5	5	250	no relief	no relief
CL	Benzene	AWM	CL Bz AWM	0.08	0.5	0.01	0.05	20	500	0.5	3.5	5	250	no relief	no relief
CL	Beryllium	DW	CL Be DW	0.08	0.08	no relief	no relief	500	500	no relief	no relief	200	250	no relief	no relief
CL	Beryllium	AWF	CL Be AWF	0.08	0.08	no relief	no relief	500	500	no relief.	no relief	200	250	no relief	no relief
CL	Beryllium	AWM	CL Be AWM	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief	no relief
CL	Cadmium	DW	CL Cd DW	0.08	0.2	no relief	no relief	200	500	no relief	no relief	100	250	no relief	no relief
CL	Cadmium	AWF	CL Cd AWF	0.08	0.1	no relief	no relief	200	500	no relief	no relief	150	250	no relief	no relief
CL	Cadmium	AWM	CL Cd AWM	0.08	0.2	no relief	no relief	200	500	no relief	no relief	100	250	no relief	no relief

Using the Tools Summary Lookup Backup Sheets

CL

	Index	PCOC: → Applicable GW Use: → Minimum Mandatory Pathway Standard: → (µg/g)	Toluene DW 450									relief	relief
		P	Protocol 2 Constraint Note:									lower bound	upper bound
T	1	infiltration rate (m/yr) CSR Standard (µg/g) BC GPM (µg/g)	a	0.08 6.0 20	0.1 6.0 20	0.2 6.0 10	0.3 6.0 8.5	0.4 6.0 7.0	0.45 6.0 6.5	0.8 6.0 6.5	0.55 6.0 6.0	0.08	0.5
foc	f _{oc}	fraction of organic carbon () CSR <u>Standard (µg/g)</u> BC GPM (µg/g)		0.001 ► 6.0 0.25	0.005 6.0 6.0	0.01 6.0 80	0.015 6.0 600	0.02 6.0 1500	0.03 6.0 2000	0.04 6.0 2500	0.05 6.0 3000	0.01	0.05
X	x	distance to point of compliance (m CSR Standard (µg/g) BC GPM (µg/g)	b, c,d	10 6.0 6.0	20 6.0 60	40 6.0 350	60 6.0 350	80 6.0 350	100 6.0 350	200 6.0 350	500 6.0 350	20	500
b	b	depth from source to water table (m) CSR Standard (μg/g) BC GPM (μg/∮)	<u>, c</u> →	0 6.0 6.0	0.5 6.0 350	1 6.0 350	1.5 6.0 350	2 6.0 350	2.5 6.0 350	3 6.0 350	3.5 6.0 350	0.5	3.5
V	v	average linear groundwater velocity (m/yr) CSR Standard (µg/g) BC GPM (µg/g)		5 6 350	10 6.0 250	30.27 6.0 0	50 6.0 3	100 6.0 2	150 6.0 2	200 6.0 1.5	<mark>250</mark> 6.0 1.5	5	10
рН	pH _{soil}	pH of soil (-) CSR Standard (µg/g) BC GPM (µg/g)	b	5 60 6.0	5.5 6.0 6.0	6 6.0 6.0	6.500 6.0 6.0	7 6.0 6.0	7.5 6.0 6.0	8 6.0 6.0	9 6.0 6.0		

CSAPSOCIETY.BC.CA SLRCONSULTING.COM

Link to

Land Use: \rightarrow

• Using the Tools PCOC Overview Index

Overview Sheets Showing Where a Specific Groundwater Protection Model Parameter Value Gives Relief over CSR Schedule 3.1 Part 1

Link to Instructions					
Parameter Setting	•	Link to Sheet	Ins	ount of Relief stances ut of 204)*	T
I - infiltration rate = 0.08 m/yr		<u>I-0.08</u>		10	04
I - infiltration rate = 0.1 m/yr		<u>I-0.1</u>		9	96
I - infiltration rate = 0.2 m/yr		<u>I-0.2</u>		9	90
I - infiltration rate = 0.3 m/yr		<u>I-0.3</u>		8	82
I - infiltration rate = 0.4 m/yr		<u>I-0.4</u>		6	62
I - infiltration rate = 0.45 m/yr		<u>I-0.45</u>		4	46
I - infiltration rate = 0.5 m/yr		<u>I-0.5</u>		1	18
I - infiltration rate = 0.55 m/yr		<u>I-0.55</u>			2
foc - fraction of organic carbon = 0.001		<u>foc-0.001</u>			0
foc - fraction of organic carbon = 0.005		<u>foc-0.005</u>			2
for fraction of organic carbon = 0.01		for 0.04		c	cc

• Using the Tools PCOC Overview Sheets

relief count =

GPM Analyte Relief

<u>Ellik to index</u>	GPIVI Analyte Relief		Tellei	count	-	38													
	Overview						G	roundv	vater l	Jses				Land U	se Mano	datory	Factors		
b - depth from source to water									Maria										
table = 1.5 m	Land Use →		CL			L			wodelle	d SSS for all app	blicable wa	ter uses		Mand	latory Factors	- CL	Man	datory Factors	- IL
	2414 000	DW	AWF A	WM D	WA W	/F AWM		Groundwater u	used for	Groundwater flow	to surface	Groundwater flov	v to surface	Intake of	Toxicity to So		Intake of	Toxicity to Soi	
All other GPM parameters set to default value.	Groundwater Use →							Drinking Wate		water used by A		water used by A		Contaminated			Contaminated	Invertebrates	
									. (= ,	Freshwater (Marine (A		Soil (i)	and Plants (t		Soil (i)	and Plants (t)	
Schedule 3.1	Comments						C	SR Sch 3.1	BC GPM	CSR Sch 3.1	BC GPM	CSR Sch 3.1	BC GPM						
PCOC								Part 1		Part 1		Part 1							
Anthracene - no relief	no water use pathways																		
Arsenic		Ν	N	Ν	NN	I N		10	10	10	10	10	10	150	40	40 t	400	40	40 t
Barium		Ν	N	Ν	NN	I N		350	350	3500	3500	1500	1500	50,000	1,500	1,500 t	1,000,000	1,500	1,500 t
Benzene		Y	Y	Y	Y Y	Y Y		0.035	1	2.5	90	6.5	250	1000	250	250 t	6500	250	250 t
Benzo(a)pyrene - no relief	no water use pathways																		
Beryllium		Ν	Ν	Ν	N N	I N		20	7.5	4	1.5	2500	950	500	350	350 t	15000	350	350 t
Cadmium		Ν	N	Ν	N N			1	1.0	1	1.0	3.5	2.5	150	75	75 t	3500	75	75 t
Chloride Ion		Ν	N	Ν	NN	I N		100	100	600	600			1,000,000	2,500	2,500 t	1,000,000	2,500	2,500 t
Chromium (total) - not applicable																			
Chromium (VI)		N	N	N	NN			60	60	60	60	60	60	750	250	250 t	20000	250	250 t
Chromium (III)		Ν		N	N N			1000000	1000000	300000	300000	1000000	1000000	750	250	250 t	20000	250	250 t
Cobalt	adjusted for provincial background	N		N	N N			25	25	25	25	25	25	75	200	75 i	2000	200	200 t
Copper		N		N	N N			50000	25000	3000	1500	650	350	25,000	300	300 t	700,000	300	300 t
Cyanide		Ν	N	N	N N	I N		6.5	6.5	1.5	1.5	0.35	0.35	150	10	10 t	4000	10	10 t
DDT - no relief	no water use pathways								1.5					400000	1000	1000	4000000	1000	1000
DIPA		N	N	N		I N		1.5 45	1.5 200	6 200	6.0 200	6 200	6.0 200	100000	1000 650	1000 t	1000000	1000	1000 t
Ethylbenzene Ethylene Glycol		T N			Y N			+ə 10	200	700	1500	700	1500	25000 500000	6000	650 t 6000 t	700000	650 6000	650 t 6000 t
Fluoranthene - no relief	no water use pathways	IN	T	T				10	· · · · ·	700	1000	700	1500	500000	0000	6000 l	1000000	6000	6000 l
Lead	no water use patriways	N	N	N	NN	I N		3500	1500	35000	20000	6500	3500	150	1000	150 i	4000	1000	1000 t
Manganese		N	*****	N	N			2000	2000	00000	20000	0000	3300	35000	2000	2000 t	1000000	2000	2000 t
Mercury - no relief	no water use pathways							2000	2000					00000	2000	2000 (1000000	2000	2000 1
Methanol		Y	N	N	Y	I N		45	550					150000	1500	1500 t	1000000	1500	1500 t
Molybdenum	-	N		N	NN	I N		15	15	650	650	650	650	1500	150	150 t	35000	150	150 t
Naphthalene		N	*****	N	NN	I N		100	100	75	100	75	100	5000	20	20 t	150000	20	20 t
Nickel		N		N	N N			70	70	300	250	70	70	3000	250	250 t	80000	250	250 t
Nonylphenol		N	N	N	N N	I N		20	20	4	4.0	3	3.0	1000	15	15 t	35000	15	15 t
Pentachlorophenol		Y	Y	Y	Y Y	Ý		2.5	30	0.1	30	0.1	30	550	55	55 t	900	55	55 t
PFOS		Ν	N	Ν	N N	I N		0.35	0.35	9	9.0	9	9.0	7.5	150	7.5 i	200	150	150 t
Phenol		Y	t	t	Y t	t		7.5	200	15	400	15	400	75000	200	200 t	1000000	200	200 t
PCBs - no relief	no water use pathways																		
PCDDs and PCDFs - no relief	no water use pathways																		
Selenium		Ν	N	Ν	N N			1	1.0	1	1.0	1	1.0	1,500	2	2 t	35,000	2	2 t
Sodium Ion		Ν		Ν	N N			15000	15000					1000000	1000	1000 t	1000000	1000	1000 t
Sulfolane		Ν		Ν	N N			0.1	0.035	200	200	200	200	2500	500	500 t	70000	500	500 t
Tetrachloroethylene		Ν		Ν	NN					2.5	2.5	2.5	2.5	1500	30	30 t	40000	30	30 t
Toluene		Y			Y Y	······		6	350	0.5	350	200	350	20000	450	450 t	550000	450	450 t
Trichloroethylene		N		N	N N					0.3	0.30	0.3	0.30	150	25	25 t	3500	25	25 t
Uranium		N		N	N N			30	30	150	150	150	150	750	2000	750 i	20000	2000	2000 t
Vanadium		N		Ν	NN			100	100		400		100	1500	300	300 t	35000	300	300 t
Xylenes		Y	Y	Y	Y Y	Y		6.5 600	100	20 350	100	20 150	100	50,000 75000	600	600 t	1,000,000	600	600 t
4Inc	t in the second se	M	N	N	N	N		600	500	350	300	150	160	/5000	450	+ 450 t	1000000	450	450 t

Link to Index

• Using the Tools PCOC Overview Sheets

Link to Index	GPM Analyte Relief Overview		reli	ef cour	nt =		
b - depth from source to water table = 1.5 m	Land Use →	DW		A)//M		IL AWF	A\A/M
All other GPM parameters set to default value.	Groundwater Use →	Dvv	AVVE	AVVIVI	Dvv	AVVE	AVVIVI
Schedule 3.1 PCOC	Comments						
Anthracene - no relief	no water use pathways						
Arsenic		Ν	Ν	Ν	Ν	Ν	Ν
Barium		Ν	Ν	Ν	Ν	Ν	Ν
Benzene		Y	Y	Y	Y	Y	Y

• Using the Tools PCOC Overview Sheets

b - depth from source to water table = 1.5 m All other GPM parameters set to default value.	CL AW F	Groundwater flow		Intake of	atory Factors - Toxicity to Soil	CL
All other GPW parameters set to default value.	F	water used by A Freshwater (Contaminated Soil (i)	Invertebrates and Plants (t)	minimum
Schedule 3.1 PCOC		CSR Sch 3.1 Part 1	BC GPM			
Benzene	Y	2.5	250	1000	250	250 t
X = X = X X = X	×					
Naphthalene	Ν	75	100	5000	20	20 t
Phenol	t	15	400	75000	200	200 t

Using the Tools 2-Parameter Matrix Index

2-Parameter Matrices Showing Ranges of Groundwater Protection Model Relief

Link to Instructions				
PCOC	GPM Parameter 1	GPM Parameter 2	Link to Sheet	Count of Relief Instances*
	-			v
Nonylphenols	Infiltration	fraction of organic carbon	foc-Infilt NNE	948
Pentachlorophenol	Infiltration	fraction of organic carbon	foc-Infilt PCP	1432
Perfluorooctane Sulfonate	Infiltration	fraction of organic carbon	foc-Infilt PFOS	924
Phenol	Infiltration	fraction of organic carbon	foc-Infilt Phen	1420
Sulfolane	Infiltration	fraction of organic carbon	foc-Infilt_Sulf	1224
Tetrachloroethylene	Infiltration	fraction of organic carbon	foc-Infilt PCE	956
Toluene	Infiltration	fraction of organic carbon	foc-Infilt Tol	1424
Trichloroethylene	Infiltration	fraction of organic carbon	foc-Infilt TCE	964
Xylenes, total	Infiltration	fraction of organic carbon	foc-Infilt Xyl	1428
Arsenic	Infiltration	distance to point of compliance	dPC-Infilt As	1054
Barium	Infiltration	distance to point of compliance	dPC-Infilt_Ba	630
Benzene	Infiltration	distance to point of compliance	dPC-Infilt Bz	2000
Beryllium	Infiltration	distance to point of compliance	dPC-Infilt Be	742
Cadmium	Infiltration	distance to point of compliance	dPC-Infilt_Cd	1604
Chloride Ion	Infiltration	distance to point of compliance	dPC-Infilt_Cl	1266
Chromium, hexavalent	Infiltration	distance to point of compliance	dPC-Infilt_Cr(VI)	10
Chromium, trivalent	Infiltration	distance to point of compliance	dPC-Infilt_Cr(III)	0
Cobalt	Infiltration	distance to point of compliance	dPC-Infilt Co	400

CSAPSOCIETY.BC.CA SLRCONSULTING.COM

• Using the Tools

2-Parameter Matrix Sheet

Link to			Variables:						8		8		Pa	P		pue	pue	P	pue	Ver
Index			pH and		-				Pea		Pea		10	nlar		10	10	inlar	10	COL
muex			Infiltration		gan ~ ss	Ъ	9	œ	, ca	œ	cal	<u>₹</u>	ē.	Mai	yer.	IRAN I	E S	Mai	ē.	u§ _
			minuation		3 /8 Thomps Nicola/ Okanage	oter	5 Cariboo	eeu	nine	eena	nine	de	2	Wer	ofer	2	2	wer	2	Metro
PCOC:		BC CDM		Region →	중독분 경	4 S	د ت ن	చ్ చ	~ ō	చ్ చ	~ 5	4 S	- \$	2 ہے	48	- \$	- \$	2 م	- \$	Ň
0		BC GPINI P	kesuits (µg/g	Regional Background																
Copper				(µg/g) →	75	35	60) 50	70	50	70	35	100	75	35	100	100	75	100	150
	No Relief		GPM result less mal Bakground																	
		_		Municipalities with	Ashcroft,			Burns Lake,												
	Relief - Constrained by	' B	lelief!	infiltration specified in	Kamloops,		Quesnel,	Ootsa Lake	Dawson											
Mandato	ry Tox/Intake Standard			Appendix 1 of Protocol	Kelowna, Lillooet, Lytton, Osoyoos,	Cranbrook, Golden,	Tatlayoko Lake.	Skins Lake Spillwau	Creek, Fort Nelson /						Nakusp/					
	Potential Relief and	d Relief Count:	272	2 2	Penticton, Salmon	Skookumchu	Villiams	Telegraph	Prince	Smithers?	Fort St.	Creston/			Nelson	Saturna	North			Vancouve
	Minimum Mandatory		CSR Schedule	\rightarrow	Arm, Vernon	ck	Lake	Creek	George	Dease lake	John	Warfield	Victoria	Pemberton	Revelstoke	Island	Cowichan	White Rock	Comox	r
	Toxicity/Intake CSR		3.1 standard for		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1 d	Schedule 3.1		Ground y ater	Protocol 2 Appendix 1	80	80	80	80	80/81	94 / 111	117	118 / 123	212	275	277/312/311	314	445	468	538	550
Land use	Standard	r Use	use	Listed Infiltration (mm/yr) →	80	80	80	80	81	111	117	123	212	275	312	314	445	468	538	550
				Infiltration Used																
_				(mm/yr) →																
/↓	▼ ↓µg/g ▼	r 🔶 🖵	↓µg/g 💌	pH↓ .	· •	-	-		*	-	*	-	*	-	*	*	-	*	*	+
CL	300 300	AWF AWF	7500 7500	7.6 7.7	25000 25000	25000 25000	25000 25000	25000 25000	25000 25000	20000 20000	20000 20000	20000 20000	15000 15000	10000 10000	10000 10000	10000 10000	8000 8000	8000 8000	7500 7500	7500 7500
CL CL	300	AWF	7500	8.0	25000	25000	25000	25000	25000	20000	20000	20000	15000	10000	10000	10000	8000	8000	7500	7500
CL	300	AWE	7500	8.5	25000	25000	25000	25000	25000	20000	20000	20000	15000	10000	10000	10000	8000	8000	7500	7500
CL		AWF AWM	7500 75	9.0 5.0	25000	25000 75	25000 75	25000 75	25000	20000	20000	20000	15000 75	10000	10000 75	10000	8000 75	8000	7500 75	7500 75
CL	300	AWM	75	5.1	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
CL	300 300	AWM AWM	75 75	5.2 5.3	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75
CL	300	AWM	75	5.4	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
CL CL	300 300	AWM AWM	75 75	5.5 5.6	75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75
CL	300	AWM	75	5.7	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
CL CL	300 300	AWM AWM	75 75	5.8 5.9	95 150	95 150	95 150	95 150	95 150	75 100	75 95	75 95	75 75	75 75	75 75	75 75	75 75	75 75	75 75	75 75
CL	300	AWM	150	6.0	200	200	200	200	200	150	150	150	90	75	75	75	75	75	75	75
CL CL	300 300	AWM AWM	150 150	6.1 6.2	250 400	250 400	250 400	250 400	250 400	200 300	200 300	200 250	150 200	100 150	100 150	100 150	85 100	80 100	75 100	75 100
CL	300	AWM	150	6.3	550	550	550	550	550	400	400	400	250	250	200	200	150	150	150	150
CL	300 300	AWM AWM	150 650	6.4 6.5	800 1000	800 1000	800 1000	800 1000	800 1000	600 300	600 850	550 800	400 550	350 450	300 450	300 450	250 350	250 350	250 350	250 350
CL	300	AWM	650	6.6	1500	1500	1500	1500	1500	1000	1000	1000	700	600	550	550	450	450	400	400
CL	300 300	AWM AWM	650 650	6.7 6.8	2000	2000 2500	2000 2500	2000 2500	2000 2500	1500 2000	1500 1500	1500 1500	900 1000	750 950	700 900	700 850	600 750	550 700	550 650	550 650
CL	300	AWM	650	6.9	3000	3000	3000	3000	3000	2000	2000	2000	1500	1000	1000	1000	300	300	850	850
CL	300	AWM	1500	7.0	3500	3500	3500	3500	3500	3000	2500	2500	2000	1500	1500	1500	1000	1000	1000	1000
CL	300 300	AWM AWM	1500 1500	7.1 7.2	4000 4500	4000 4500	4000 4500	4000 4500	4000 4500	3000 3500	3000 3500	3000 3500	2000 2000	1500 2000	1500 2000	1500 1500	1500 1500	1500 1500	1000 1500	1000 1500
CL	300	AWM	1500	7.3	5000	5000	5000	5000	5000	4000	4000	3500	2500	2000	2000	2000	1500	1500	1500	1500
CL	300 300	AWM AWM	1500 1500	7.4 7.5	5500	5500 5500	5500 5500	5500 5500	5500 5500	4500 4500	4000 4000	4000 4000	3000 3000	2500 2500	2000 2000	2000 2000	2000 2000	2000 2000	1500 1500	1500 1500
CL	300	AWM	1500	7.6	5500	5500	5500	5500	5500	4500	4000	4000	3000	2500	2000	2000	2000	2000	1500	1500
	300 300	AWM AWM	1500 1500	7.7 8.0	5500	5500 5500	5500 5500	5500 5500	5500 5500	4500 4500	4000 4000	4000 4000	3000 3000	2500 2500	2000 2000	2000 2000	2000 2000	2000 2000	1500 1500	1500 1500
CL	300	AWM	1500	8.5	5500	5500	5500	5500	5500	4500	4000	4000	3000	2500	2000	2000	2000	2000	1500	1500
CL	300	AWM	1500	9.0	5500	5500	5500	5500	5500	4500	4000	4000	3000	2500	2000	2000	2000	2000	1500	1500
_																				

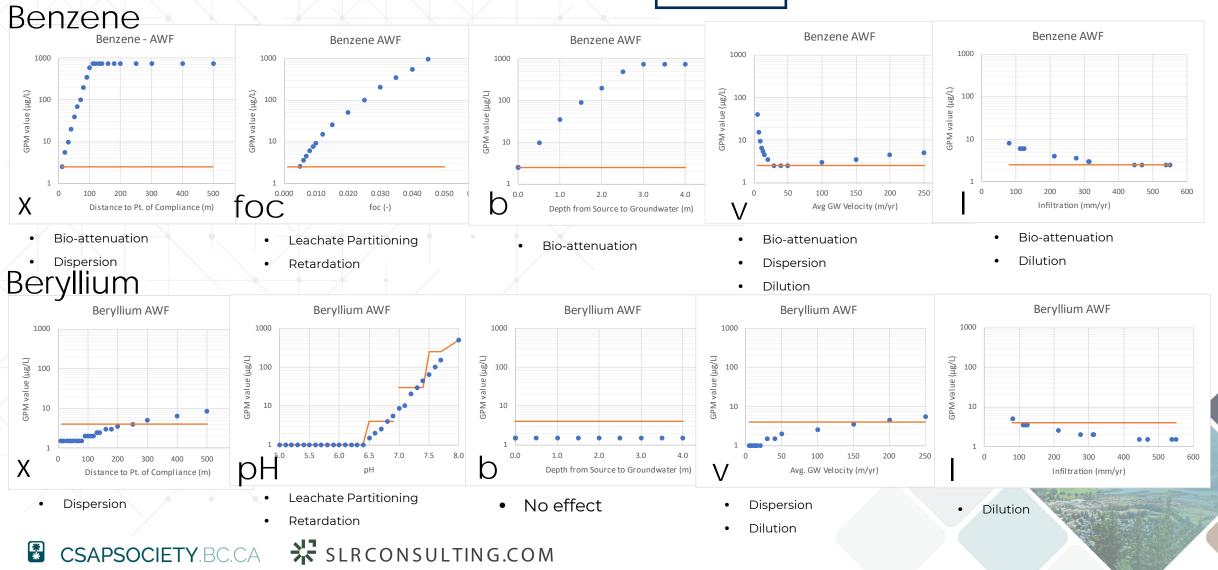
• Using the Tools

2-Parameter Matrix Sheet

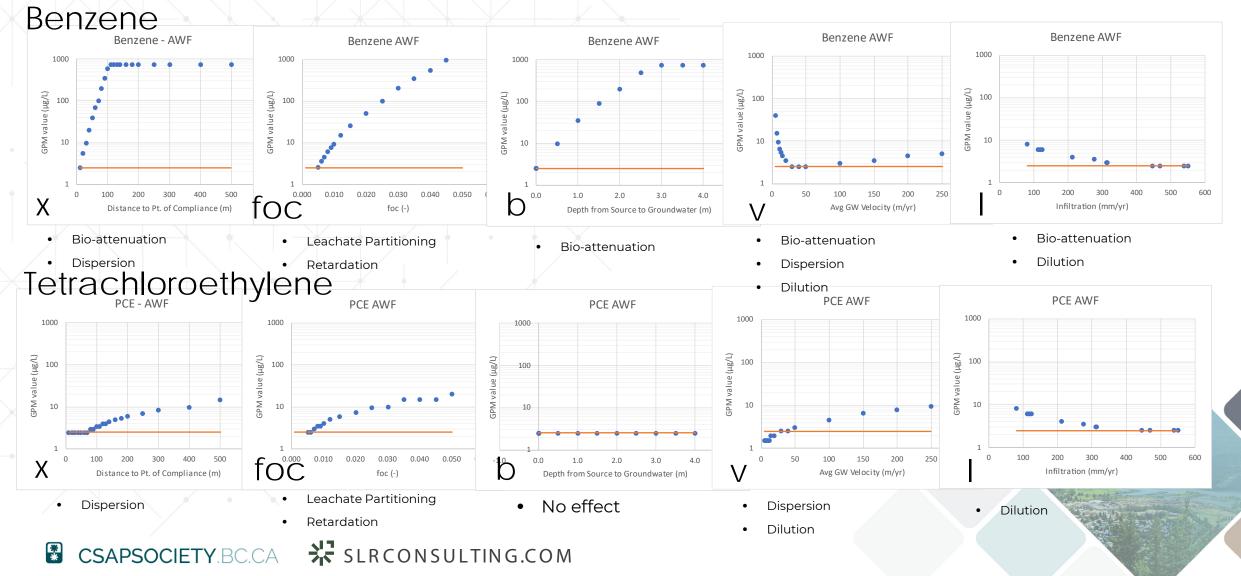
Link to Index PCOC:	Variables pH and Infiltration			ra hompson/ licolar ikahagan			N	Ainimur	n Man	datory			CS	R Schedu	ile 3.1	
Region →	3 /8 Thompson/ Nicola/ Okanagan	4 Kootenay	5 Cariboo	v Keena So So	7 Omineca/ Peace	o So So	7 Omineca/ Peace	4 Kootenay	1 Vancouver Island	2 Lower Mainland	4 Kootenay	1 Vancouver Island	1 Vancouver Island	2 Lower Mainland	1 Vancouver Island	Metro Vancouver
Regional Background (µg/g) →	75	35	60	50	70	50	70	35	100	75	35	100	100	75	100	150
Municipalities with infiltration specified in Appendix 1 of Protocol 2 → Protocol 2 Appendix 1 Listed Infiltration (mm/yr) →	Lytton, Osoyoos, Penticton, Salmon	Cranbrook, Golden, Iookumchuck J 80	Quesnel, Tatlayoko Lake, Williams Lake ↓ 80	Burns Lake, Ootsa Lake Skins Lake Spillway, Telegraph Creek ↓ 80	Dawson Creek, Fort Nelson / Prince George ↓ 80 / 81	Smithers/ Dease lake ↓ 94 / 111	Fort St. John ↓ 117	Creston/ Warfield ↓ 118 / 123	Victoria ↓ 212	Pemberton ↓ 275	Nakusp/ Nelson/ Revelstoke ↓ 277 / 312 / 311	Saturna Island ↓ 314	North Cowicha ↓ 445	n White Rock ↓ 468	Comox ↓ 538	Vancouver ↓ 550
Infiltration Used (mm/yr) →	80	80	80	80	81	111	117	123	212	275	312	314	445	468	538	550
CL 300 CL 300	AWM 1500 AWM 1500	Сор	pe	r					300 300 300			DW DW DW		500 500 2000		

• Using the Tools 2-Parameter Matrix Sheet

	PCOC:				Region → Regional Background	6 Skeena				
	Copper				(µg/g) →	50				
					\rightarrow	Smithers/ Dease lake				
		Minimum Mandatory		CSR Schedule 3.1		Ļ				
	Land use	Toxicity/Intake CSR Schedule 3.1 Standard	Groundwater Use	standard for Groundwater use	Protocol 2 Appendix 1 Listed Infiltration (mm/yr) →	94 / 111				
					Infiltration Used	111				
					(mm/yr) →					
	↓	↓µg/g	↓ -	↓µg/g 🔽	pH ↓	T				
	CL CL	300 300	AWF AWF	75 75	5.2	75 80				
	CL	300	AWF	75	5.3 5.4	100				
	CL	300	AWF	100	5.5	150				
	CL	300	AWF	100		150				
	CL	300	AWF	100	5.6 5.7	250				
	CL	300	AWF	100	5.8	350				
	CL	300	AWF	100 700	5.9	450				
	CL	300	AWF	700	6.0	650				
CSAPSOCIETY.BC.CA 🛠 SLRCONSULTING.COM										

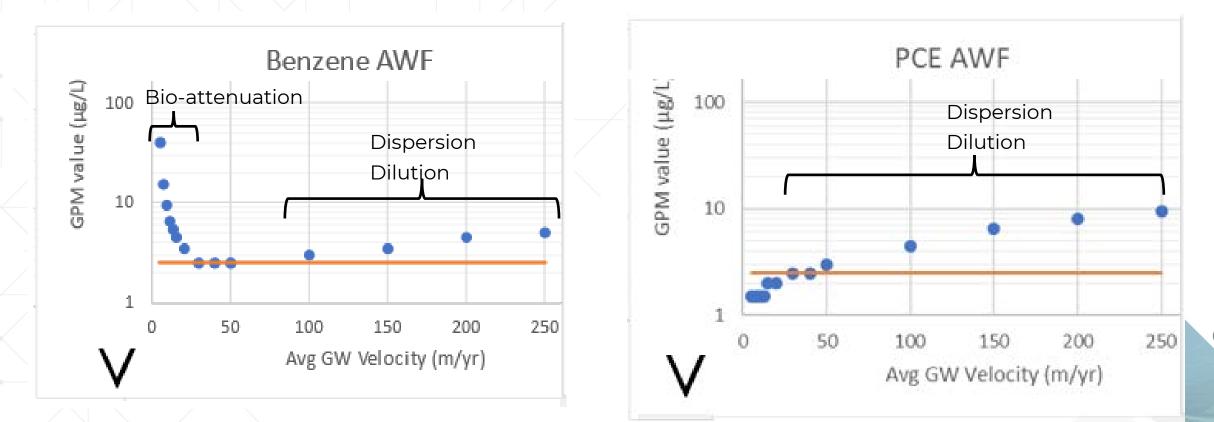

• Using the Tools 2-Parameter Matrix Sheet

	PCOC:				Region \rightarrow	1 Vancouve Island
X	Vanadium]			Regional Background (µg/g) →	200
				COD Schodula 2.4	\rightarrow	Victoria
	Land use	Minimum Mandatory Toxicity/Intake CSR Schedule 3.1 Standard	Groundwater Use	CSR Schedule 3.1 standard for Groundwater use	Protocol 2 Appendix 1 Listed Infiltration (mm/yr) →	212
					Infiltration Used (mm/yr) → Groundwater Velocity ↓	212
	↓ ▼	↓µg/g 🖵	↓	↓µg/g 🖵		•
	CL	300	DW	100	13	100
	CL	300	DW	100	15	100
	CL	300	DW	100	20	100
	CL	300	DW	100	30	100
	CL	300	DW	100	40	<u>150</u>
	CL CL	300 300	DW	100 100	50 100	<u>150</u>
	CL	300	DW	100	150	300 400
	CL		DW	100	200	500
C	SAPSOCIETY.	BC.CA	ISULTING.CO		ZUU	300

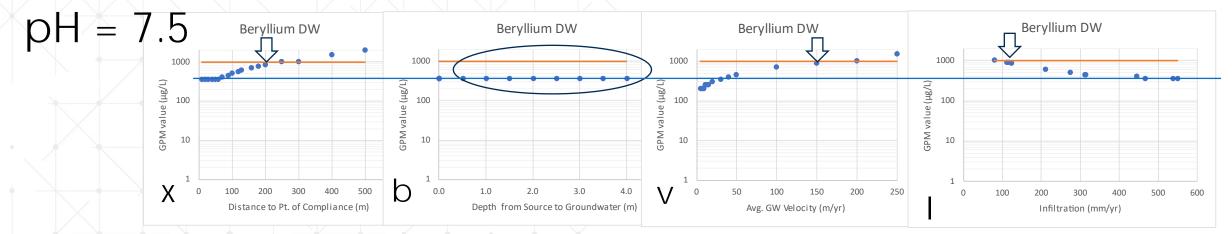

Relative Effects

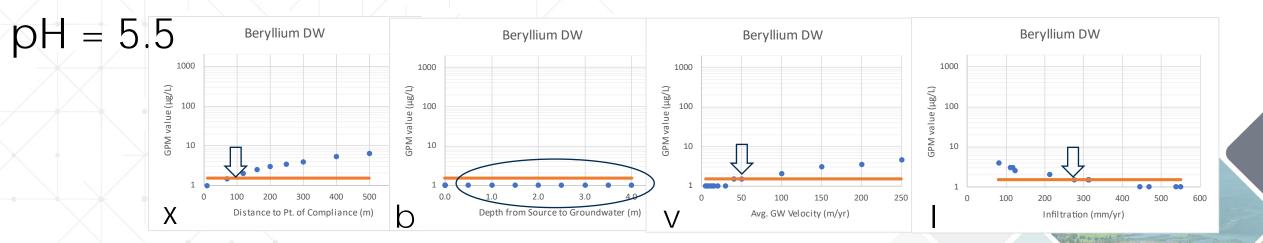
GPM value
 CSR Std

Relative Effects - Organics



Relative Effects - Organics


Benzene


Tetrachloroethylene

Relative Effects – pH

SLRCONSULTING.COM

Top 5 substances for P2 SSS

2-Parameter Matrices Showing Ranges of Groundwater Protection Model Relief

Link to Instructions				
PCOC	GPM Parameter 1 GPM Parameter 2		Link to Sheet	Count of Relief Instances*
1	·	•	v	
Benzene	Infiltration	fraction of organic carbon	foc-Infilt Bz	1424
Benzene	Infiltration	distance to point of compliance	dPC-Infilt Bz	2000
Benzene	Infiltration	depth from source to water table	dGW-Infilt Bz	1168
Benzene	Infiltration	average groundwater velocity	vGW-Infilt Bz	1282

Top 5 substances for P2 SSS

Orga	nics			
Rank	PCOC	Relief Count*	Out of	Relief %
1	Benzene	5874	6144	95.6%
2	Pentachlorophenol	5864	6144	95.4%
3	Phenol	5836	6144	95.0%
4	Xylenes	5682	6144	92.5%
5	Toluene	5588	6144	91.0%
6	Methanol	1846	2048	90.1%
7	Diisopropanolamine (DIPA)	5368	6144	87.49
8	Trichloroethylene	3456	4096	84.49
9	Tetrachloroethylene	3428	4096	83.7%
10	Ethylene Glycol	4976	6144	81.0%
11	Sulfolane	4106	6144	66.8%
12	Nonylphenols	3558	6144	57.9%
13	Ethylbenzene	2754	5024	54.8%
14	Perfluorooctane Sulfonate	2270	6144	36.9%
15	Naphthalene	0	5632	0.0%

* Relief count summed from 2-Parameter CL/IL matrices

SLRCONSULTING.COM

Inorgar	nics			
Rank	PCOC	Relief Count*	Out of	Relief %
1	Cyanide	6538	7584	86.2%
2	Chloride Ion	4172	5392	77.4%
3	Uranium	5564	7584	73.4%
4	Cadmium	4516	7584	59.5%
5	Vanadium	1342	2528	53.1%
6	Arsenic	3180	6688	47.5%
7	Beryllium	2352	7584	31.0%
8	Molybdenum	2214	7584	29.2%
9	Zinc	2016	7584	26.6%
10	Barium	1984	7584	26.2%
11	Nickel	984	7584	13.0%
12	Cobalt	588	7584	7.8%
13	Selenium	202	5104	4.0%
14	Lead	277	7584	3.7%
15	Copper	272	7584	3.6%
16	Chromium, hexavalent	30	7584	0.4%
17	Chromium, trivalent	0	7584	0.0%
18	Manganese	0	2528	0.0%
19	Sodium Ion	0	2528	0.0%

Example Scenario #1 – Benzene DW

- CL Site in Kamloops -> I = 80 mm/yr
- Soil is silty sand -> v = 40 m/yr, foc = 0.002
- Groundwater is deep -> d = <u>10 m</u>, but Z = 10 m => b = 0 m

i.	infiltration rate (m/yr) a CSR Standard BC GPM		0.08 0.035 0.10	0.1 0.035 0.095	0.2 0.035 0.060	0.3 0.035 0.045	0.4 0.035 0.040	0.45 0.035 0.035	0.5 0.035 0.035	0.55 0.035 0.035	
			_								
foc	fraction of organic carbon (-)	b	0.001	0.005	0.01	0.015	0.02	0.03	0.04	0.05	
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	
	BC GPM		0.006	0.035	0.10	0.30	0.65	2.5	7.0	20	
x	distance to point of compliance (m)	b,c,d	10	20	40	60	80	100	200	500	
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	
7	BC GPM		0.035	0.070	0.25	0.85	2.5	7.5	550	750	
b	depth from source to water table (m)	b,c	0	0.5	1	1.5	2	2.5	3	3.5	
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	
	BC GPM		0.035	0.2	0.5	1.0	3.0	6.5	15	25	
	average linear groundwater velocity										
v	(m/yr)	b	5	10	30.27	50	100	150	200	250	
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	
	BC GPM		0.45	0.10	0.035	0.030	0.035	0.045	0.055	0.060	
2											

Example Scenario #1 – Benzene DW

- CL Site in Kamloops -> I = 80 mm/yr
- Soil is silty sand -> v = 40 m/yr, foc = 0.002
- Groundwater is deep -> d = 10 m $\mathbb{Z} = 105m \implies b = 00m$ m

1	I infiltration rate (m/yr)	а	0.08	0.1	0.2	0.3	0.4	0.45	0.5	0.55
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	BC GPM			0.095	0.060	0.045	0.040	0.035	0.035	0.035
1	f _{oc} fraction of organic carbon (-) b		0.001	0.005	0.01	0.015	0.02	0.03	0.04	0.05
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
\nearrow				and the second second						
	BC GPM		0.006	0.035	0.10	0.30	0.65	2.5	7.0	20
	x distance to point of compliance (m)	b,c,d	10	20	40	60	80	100	200	500
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
7	BC GPM		0.035	0.070	0.25	0.85	2.5	7.5	550	750
J	b depth from source to water table (m)	b,c	0	0.5	1	1.5	2	2.5	3	3.5
4	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	BC GPM		0.035	0.2	0.5	1.0	3.0	6.5	15	25
1	average linear groundwater velocity				-					
	v (m/yr)	b	5	10	30.27	50	100	150	200	250
	CSR Standard		0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	BC GPM		0.45	0.10	0.035	0.030	0.035	0.045	0.055	0.060
- 8										

Example Scenario #2 – Uranium DW

	Municipalities with infiltration specified in Appendix 1 of Protocol 2 \rightarrow	Ashcroft Kamloops, Kelown a, Lillooot, Lytton, Osoyoos, Penticton, Salmon Arm, Vernon	Cranbrook, Golden, Skookumchuck	Quesnel, Tatlayoko Lake, Williams Lake	Burns Lake, Ootsa Lake Skins Lake Spillway, Telegraph Creek	Dawson Creek, Fort Nelson / Prince George	Smithers/ Dease lake	Fort St. John	Creston/ Warfield
	Protocol 2 Appendix 1 Listed Infiltration (mm/yr) →	80	80	80	80	80,81	94/111	117	118/123
	Infiltration Used (mm/yr) → Groundwater Velocity↓	80	80	80	80	81	111	117	123
	(m/yr) <u> </u>	30	30	30	30	30	25	25	25
	7	30	35	30 35	30	30 35	30	30	30
	9	45	45	45	45	45	35	35	35
	11	50	50	50	50	50	40	40	40
	13	55	55	55	55	55	45	45	40
	15	60 75	60 75	60	60 75	60 75	50	45	45
	20	75	75 100	75 100	75 100	75 100	60 80	55 75	55 75
	40	150	150	150	150	150	100	95	90
	58		150	150	150	150	100	100	100
	100	300	300	300	300	300	200	200	200
*	CSAPSOCIETY.BC.CA	SLRCONSULT	NG.COM						

Example Scenario #3 – Benzene DW

- IL Site in Fort St John -> I = 80 mm/yr
- Soil is clay till $\rightarrow v = 3 \text{ m/yr}$, foc = 0.01

		ZI					
1	infiltration rate (m/yr) CSR Standard	а	0.08 0.035	0.1 0.035	0.2 0.035	0.3 0.035	
	BC GPM		0.10	0.095	0.060	0.045	_
f _{oc}	fraction of organic carbon (-)	b	0.001	0.005	0.01	0.015	-
	CSR Standard		0.035	0.035	0.035	0.035	µg/g
	BC GPM		0.006	0.035	0.10	0.30	_ P 9/9
x	distance to point of compliance (m)	b,c,d	10	20	40	60	-
	CSR Standard		0.035	0.035	0.035	0.035	
	BC GPM		0.035	0.070	0.25	0.85	
b	depth from source to water table (m)	b,c	0	0.5	1	1.5	-
	CSR Standard		0.035	0.035	0.035	0.035	
	BC GPM		0.035	0.2	0.5	1.0	
	average linear groundwater velocity			1			-
v	(m/yr)	b	5	10	30.27	50	
	CSR Standard		0.035	0.035	0.035	0.035	
	BC GPM		0.45	0.10	0.035	0.030	
2							

Example Scenario #4 – Toluene AWF

- CL Site in Delta -> I = 550 mm/yr
- Soil is silty peat -> v = 10 m/yr, foc = 0.4
 - What if our CSM indicated foc of a different soil unit was more appropriate? Sand and Gravel unit foc = 0.006

I	infiltration rate (m/yr)	а	0.08	0.1	0.2	0.3	0.4	0.45	0.5	0.55
	CSR Standard		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	BC GPM		2.0	1.5	0.90	0.70	0.60	0.55	0.55	0.50
f _{oc}	fraction of organic carbon (-)	b	0.001	0.005	0.01	0.015	0.02	0.03	0.04	0.05
	CSR Standard		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	BC GPM		0.020	0.50	7.0	50	300	2000	2500	3000
x	distance to point of compliance (m)	b,c,d	10	20	40	60	80	100	200	500
2	CSR Standard		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
-	BC GPM		0.50	5.0	150	350	350	350	350	350
b	depth from source to water table (m)	b,c	0	0.5	1	1.5	2	2.5	3	3.5
	CSR Standard		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	BC GPM		0.50	75	350	350	350	350	350	350
	average linear groundwater velocity									1
v	(m/yr)	b	5	10	30.27	50	100	150	200	250
	CSR Standard		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	BC GPM		350	20	0.5	0.2	0.2	0.10	0.15	0.15
										1

Read the Requirements Carefully!

- Groundwater must be assessed
- Input ranges are prescribed
- SSS cannot be derived for PHC on sites where mobile NAPL is present
- Some inputs require "linked" parameters to be modified
- Some substances require site-specific inputs to be used for any modifications:
 - pH-dependent substances require site-specific soil pH
 - PCP (AW) requires site-specific soil pH and groundwater pH
 - AW standards for hardness-dependent substances require sitespecific receiving water hardness

Areas for Further Study

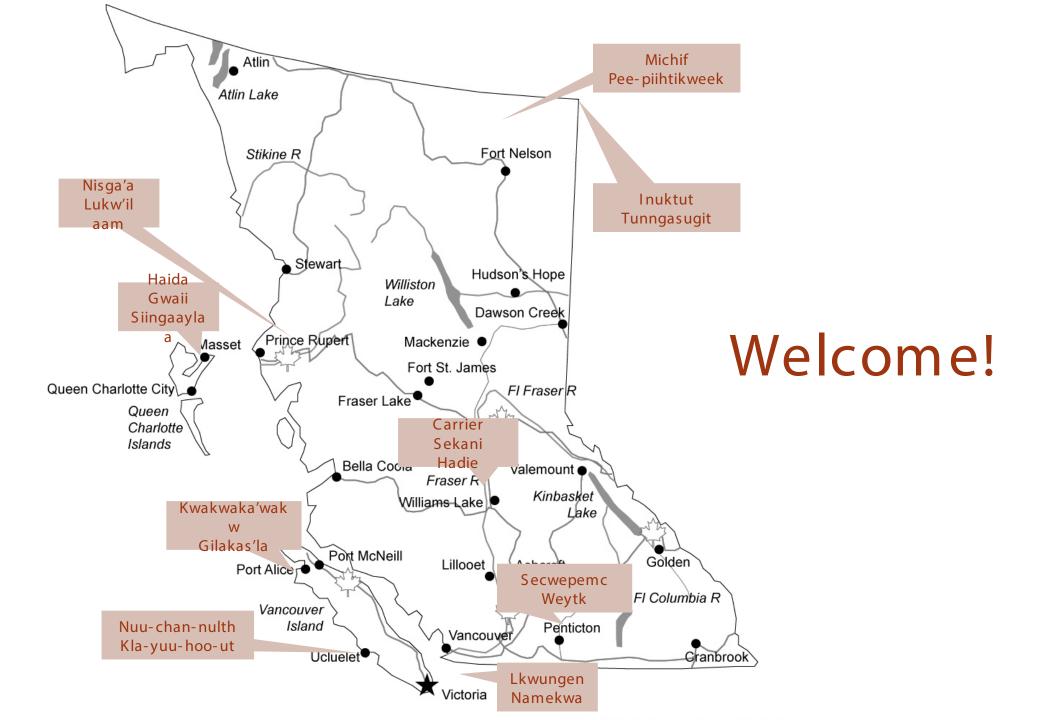
- Defensible approaches for development of site-specific pH, foc, velocity?
- How detailed a CSM do you need to have established prior to attempting to develop SSS?

Cherry-picking?

- Different modifications for different substances at the same site
- Ignoring potential modifications that would reduce the SSS
- Nothing in P2 to indicate you need to modify a minimum number of inputs based on your CSM, but is this good practice?

SLRCONSULTING.COM

THANK YOU


erobson@slrconsulting.com ibiniowsky@slrconsulting.com

Indigenous Community Engagement Workshop

ICLD

Sharing Wisdom. Celebrating Community.

INDIGENOUS COMMUNITY FOR LEADERSHIP AND DEVELOPMENT

Indigenous owned organization

- Extensive experience working with Indigenous Communities across BC. (90 nations), Public and Private Organizations.
- Since 2017, when British Columbia adopted the United Nations Declaration on the Rights of Indigenous People (UNDRIP) and the Truth and Reconciliation Commissions 94 Calls to Action, it has been our mission to support Indigenous and Non-Indigenous organizations to work collaboratively toward reconciliation.
- We work within Frameworks of Cultural Safety and Competency and provide a wide spectrum of training, research, consultation, facilitation and change management.
- We want our next generations to have better lives than us and our ancestors

The Significance of Recognizing Traditional Keepers of the Land Acknowledging Indigenous communities as the traditional custodians of this land is a vital step towards reconciliation, mutual respect, and understanding.

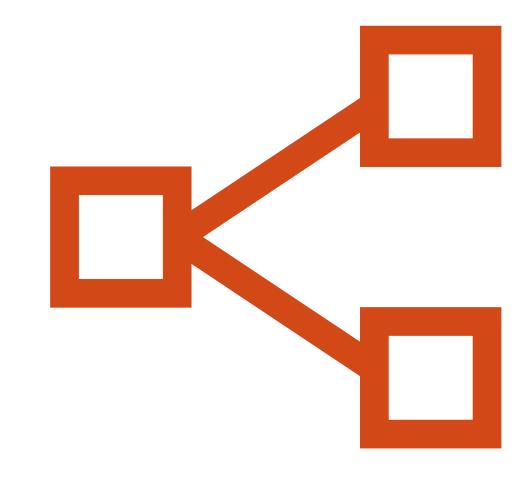
• Honoring Centuries of Stewardship:

Indigenous communities have maintained an enduring connection to these lands, protecting and nurturing them for countless generations.

• Respecting Culture and Heritage:

By recognizing their custodianship, we show respect for the rich cultures, languages, and traditions that are deeply intertwined with the land.

• Fostering Mutual Respect:


This acknowledgment is a powerful symbol of our commitment to working together, fostering trust, and creating meaningful partnerships.

• A Shared Journey:

It Is an open invitation for all of us to partake in the shared journey of understanding, learning from, and celebrating the Indigenous cultures that contribute to the uniqueness of this place.

Building Genuine Relationships

- As we bridge the dialogue between companies and communities, our role is to foster mutual respect, understanding, and lasting relationships
- In today's session, we'll provide insights into initiating in-person meetings, introducing ourselves through an Indigenized lens, and nurturing relationships based on reciprocity.
- Authentic relationships go beyond business transactions; they are built on trust, shared goals, and a commitment to respecting one another's perspectives.

Introductions

1. Begin with Land Acknowledgment:

It is a good idea to start meetings by acknowledging the traditional lands of the Indigenous community you are engaging with. Express appreciation for their stewardship of the land, which sets a respectful tone for the interaction.

1. Cultural Greeting:

Consider including a cultural greeting or a welcoming phrase in the local Indigenous language. If you're not familiar with the language, seek guidance from local community members to ensure your greeting is culturally appropriate.

1. Meet In Person Whenever Possible:

Whenever your schedule allows, aim to meet in person. Face-toface interactions build trust and convey your commitment to the relationship. If an in-person meeting isn't feasible, opt for virtual meetings that facilitate visual connections.

First Nations Engagement:

Step 1 – Identification

- Identify First Nations that may have a potential mutual interest
- Initial research for matters of mutual interest.
- How far is the proposed area from existing Indian Reserves or Treaty Lands?
- Are there archaeological sites in the area?
- Has a First Nation previously identified an interest or concerr in the area
- Which First Nations have hunting, fishing, trapping, gathering sites or other traditional use sites within jurisdiction?

Note: traditional use sites may include village or settlement areas, sacred sites or food gathering areas.

First Nations Engagement

Step 2 Engagement

- Describe the specific activity being considered
- Describe the purpose of the change
- Include a map of the proposed subject area;
- Provide details on the process (e.g. proposed timing)
- Ask the First Nation(s) to identify what practices, customs or traditions are engaged in that area, if any whether Indigenous Interests may be adversely
- Hold a face-to-face meeting (if possible)

Step 3 Assessment

Assessment of Engagement includes a report and supporting documents that provide details on engagement efforts.

1. Engagement Report: Create a comprehensive report detailing your engagement activities, discussions, concerns, and agreements with First Nations communities.

2. Supporting Documents: Gather supporting materials such as meeting minutes, emails, and formal agreements to substantiate your engagement report.

3. Efforts Documentation: Document your engagement efforts, including the number of meetings, participants, locations, and follow-up actions.

4. Outcomes and Agreements: Clearly outline any agreements and resolutions resulting from the engagement, along with implementation and monitoring plans.

Other Engagement Tips:

- Differentiate Responsibilities: Respect the roles of the Chief and Council and community departments.
- Key Contacts: Identify community contacts, starting with the CEO or Band Manager.
- Personal Meetings: Schedule face-to-face interactions when possible.
- Transparent Communication: Share project details openly and address challenges.

Additional Tips

Explore **additional strategies** for meaningful engagement with Indigenous communities:

Beyond projects, consider how your HR department can facilitate connections. Reach out to Indigenous bands, introducing yourself as part of the Society of Contaminated Sites Approved Professionals of BC.

Prioritize **in-person meetings** when possible, and let these meetings be more than a discussion of professional duties. Share who you are through an Indigenous lens: your roots, your understanding of the seated territory you call home.

To maintain these relationships, consider gifting if within your budget. This presents symbolize respect and appreciation, and they can go a long way in building trust.

Sustaining ongoing communication is a key priority. Our commitment extends well beyond project timelines, reflecting our dedication to preserving the environment and ancestral lands for future generations. Iterate your goal to promote lasting sustainability and mutual benefit through collaboration with the community. Engaging Communities through Etuamptumk 'Two-Eyed Seeing':

 Learning to see from one eye the strengths of Indigenous knowledge and ways of knowing and from the other eye Western knowledge and ways of knowing And learning to use both these eyes for the benefit of all

Key Take Aways

Early, inclusive, and consistency are essential for accountable partnerships. **Comprehensive Identification**: Initiate the engagement process by conducting a comprehensive identification of First Nations communities that may share mutual interests. This involves considering Indigenous communities located on formal reserves as well as those with traditional territories in the vicinity.

Early and Inclusive Engagement: Initiate early, comprehensive, and inclusive engagement. Share detailed information about the proposed activity, engage in face-to-face meetings where possible, and allow for modifications. Maintain ongoing dialogue.

Building Relationships: Foster relationships based on trust and respect. Engage with First Nations before project planning is complete, emphasizing understanding through multiple meetings and follow-ups.

Documented Engagement: Maintain clear records of the engagement process, including a detailed report and supporting documents. This documentation is essential for transparency and accountability.

CSAP

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

CSAP Submissions 101 Topics: How to do a review, forms, document management

David Mitchell, P.Eng.

WWW.CSAPSOCIETY.BC.CA

SUBMISSIONS 101

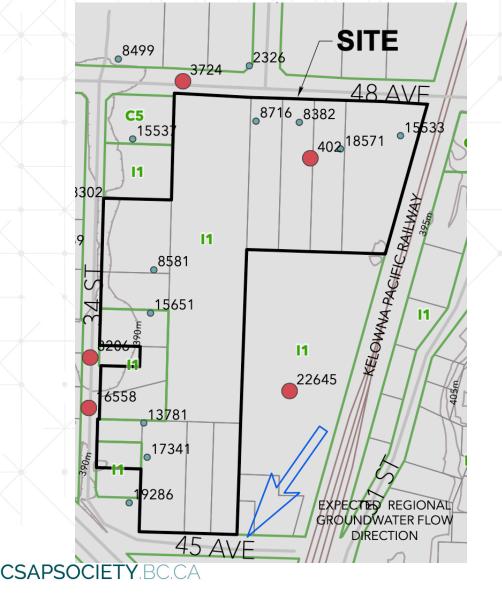
Overview Today:

- 1. Preliminary Report Review
 - 2. Confirm Protocol 6 Eligibility
 - 3. Detailed Report Review / Edits
 - 4. Forms / Document Management
 - 5. CSAP Screening
 - 6. ENV Screening
 - 7. Instrument Follow-up

5 min 5 min 5 min 5 min 5 min 5 min 5 min

Preliminary Report Review

- Is everything there? Think 'CSR Boxes'
- Understand Site boundaries, impacted lands Confirm!
- Impacted properties
- Up to date information How old is Stage 1?
- Check Standards Soil, GW, Vapour Do they make sense?
- Reliance Can information be used?
- Review all ENV correspondence

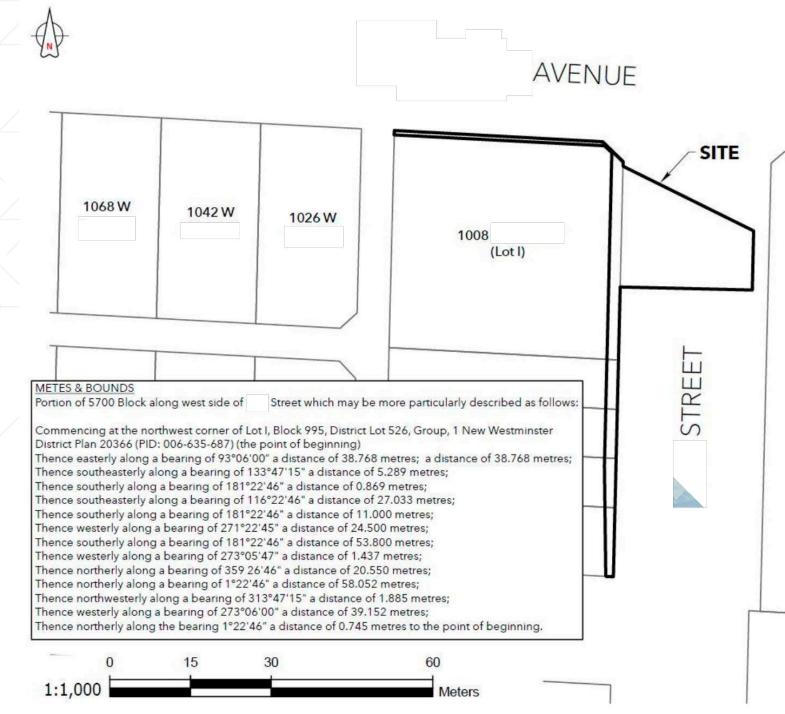

Complex Property Boundaries

LEGAL	DESCRIP	TIONS	AND	ZONING

Address	Parcel Identifier (PID)	Legal Description	Zoning		
4703 34 th Street	010-924-230	Parcel A (DD 112543F and Plan B5566) of Lot 1 District Lot 38 Osoyoos Division Yale District Plan 3340	II – Light Industrial		
4707 34 th Street	008-196-621	Lot 2 District Lot 38 Osoyoos Division Yale District Plan 3340	I1 – Light Industrial		
4617 34 th Street	010-990-607	Lot 20 Plan B4863 District Lot 38 Osoyoos Division Yale District	I1 – Light Industrial		
4505 34 th Street	010-923-161	Lot 1 District Lot 38 Osoyoos Division Yale District Plan 3355	I1 – Light Industrial		
4505 54 511661	010-923-845	The North 26 Feet of Lot 2 District Lot 38 Osoyoos Division Yale District Plan 3355	I1 – Light Industrial		
	010-923-608	Lot 3 District Lot 38 Osoyoos Division Yale District Plan 3355	I1 – Light Industrial		
4503 34 th Street	010-923-641	Lot 1 District Lot 38 Osoyoos Division Yale District Plan 3355	I-1 District, allowing for light industrial uses.		
	010-923-713	The North 24 Feet of Lot 4 District Lot 38 Osoyoos Division Yale District Plan 3355	I-1 District, allowing for light industrial uses.		
3240 48 th Avenue	010-990-496	Lot 19 District Lot 38 Osoyoos Division Yale District Plan 2630 Except Plan KAP55842	Il – Light Industrial		
	010-991-255	Lot 26 District Lot 38 Osoyoos Division Yale District Plan 2630	II – Light Industrial		
3201 45 th Avenue	010-991-280	That Part of Lot 27 Lying West of the Straight Line Joining the Mid-Point of the North Boundary with the Mid-Point of the South Boundary of Said Lot; District Lot 38 Osoyoos Division Yale District Plan 2630	II – Light Industrial		
	010-991-263	Lot 27 District Lot 38 Osoyoos Division Yale District Plan 2630 Except That Part Lying West of a Straight Line Joining the Mid-Point of the North Boundary with the Point of the South Boundary of Said Lot	II – Light Industrial		
3110 48 th Avenue	010-954-252	Lot 1 District Lot 38 Osoyoos Division Yale District Plan 2752 Except (1) That Part Lying East of a Straight Line Bisecting the Said Lot and Running Parallel to the Easterly and Westerly Boundaries Thereof (2) Plan KAP55842	II – Light Industrial		
3108 48 th Avenue	010-954-350	That Part of Lot 1 Lying East of a Straight Line Bisecting the Northerly and Southerly Boundaries Thereof; District Lot 38 Osoyoos Division Yale District Plan 2752 Except Plan KAP55842	II – Light Industrial		
3106 48 th Avenue	010-954-392	Lot 2 District Lot 38 Osoyoos Division Yale District Plan 2752 Except Plan KAP55842	II – Light Industrial		
3104 48 th Avenue	010-954-449	Lot 3 District Lot 38 Osoyoos Division Yale District Plan 2752 Except Plans 42131 and KAP55842	II – Light Industrial		
4607 34 th Street	010-990-534	The South 3.3 Chains of Lot 20 District Lot 38 Osoyoos Division Yale District Plan 2630 Except Plans B5287 and 21799	I-1 District, allowing for light industrial uses.		
4605 34 th Street	005-261-228	Lot 1 District Lot 38 Osoyoos Division Yale District Plan 21799	I-1 District, allowing for light industrial uses.		

Confirm Boundary

KAP2630.pdf


*

KAP2752.pdf PDF KAP3340.pdf KAP3355.pdf TITLE- CA5464918-PID- 010-923-641.pdf TITLE- CA5464919-PID- 010-923-608.pdf TITLE- LB133266-PID- 010-990-607.pdf TITLE-CA5464920-PID-010-923-713.pdf TITLE-CA7578587-PID-010-990-496.pdf PDF TITLE-CA7578606-PID-010-991-255.pdf TITLE-CA8234121-PID-010-923-161.pdf TITLE-CA8234122-PID-010-923-845.pdf TITLE-CA8234123-PID-010-924-230.pdf TITLE-CA8234124-PID-010-954-392.pdf PDF TITLE-CA8234125-PID-010-954-449.pdf TITLE-CA8234126-PID-008-196-621.pdf

TITLE-CA8234128-PID-010-954-350.pdf
 TITLE-CA8234129-PID-010-954-252.pdf
 TITLE-CA8234130-PID-010-991-263.pdf
 TITLE-CA8234131-PID-010-991-280.pdf

Metes and Bounds

CSAPSOCIETY.BC.CA

Protocol 6 Eligibility

- Is Arm's Length required?
- Is application risk-based? Is Risk Assessor engaged?
- Impacted Site issues? Comingled plumes?
- High Risk Sites Confirm and Confirm interim and future uses
- Pay attention to raw vapour results and ">" concentrations
- Has full delineation been achieved?
- Part site issues
- Plume stability DNAPL, LNAPL migration

Detailed Report Review

- Confirm standards again Soil, GW, Vapour
- Review against Protocols assessment spacing
- Does delineation make sense depths, areas
- Is the rationale for interpretation documented?
- Deficiencies / data-gaps listed in reports?
- Have all ENV notifications been prepared?

Detailed Report Review – No. 1 Issue

Reports not structured into CSR Boxes

- Stage 1 APECs and PCOCs
- Stage 2 Assessment of APECs and PCOCs
- DSI Delineation of AECs and COCs
- Remediation Resolution of AECs and COCs

Consider rejecting a report early before your review! Your job is reviewing the work, not doing it.

The SOSC lays it out very well. Use that.

SOSC – 'CSR Boxes'

Stage 1 and Stage 2 - Section 4.5

	Area of Potential Environmental Concern (APEC)		Check where analyses completed							
#	Description (describe location in relation to process source, waste, fill, land use or activity, etc. giving rise to APEC, and if APEC is primarily due to soil or water contamination)	Potential Contaminant of Concern (PCOC) (indicate products, chemicals, waste type, etc. and / or analytical parameter)	Soil	Sediment	Ground Water	Surface Water	Vapour	Other (explain)	Add	Delete
4										
							/			
-										

SOSC – 'CSR Boxes'

Detailed Site Investigation - Section 4.6

				Extent of Co	ontamination		
AEC / APEC # (Use same #s as for APECs in Table above)	Contaminant of Concern	Medium (e.g., soil, groundwater, sediment, vapour, surface water, other)	Maximum Measured Concentration (indicate units)	Area (m²)	Depth Range (m)	Add	Delete
						+	-
						+	-
						+	-

SOSC – 'CSR Boxes'

Remediation - Section 5.3

				Extent of Co	ontamination		
AEC / APEC # (Use same #s as for APECs in Table above)	Contaminant of Concern	Medium (e.g., soil, groundwater, sediment, vapour, surface water, other)	Maximum Measured Concentration (indicate units)	Area (m²)	Depth Range (m)	Add	Delete
						+	-
						+	-
						+	-

Detailed Report Review Edits

 It's common to make edits to reports or to require edits. Recommend tracking version history.

AE PROJECT NUMBER: 2633 February 2023 Version 3.0

- EGBC and internal policy questions. I don't have answers but beware of report dates, signatures, saving documents...
- Eyeball report dates to match submission dates?
- Version x.x. First x is changing substantial which means the date should change. A minor change (e.g., typo) is a decimal change
- Fine line between 'directing work' and 'reviewing work'.

Forms / Document Management

- These are living documents with many contributors.
- Organization and document management is critical.
- Separate draft documents from issued documents.
- Tip Number your documents to keep better order.

"Half done is well begun." Aristole

• Tip - What will everything look like the day you make the submission? (e.g. subdivisions, ownership, regulations). Plan your documents for that time.

Version History

Once submitted, if you make edits, keep track of Versions.

- Version 1.0 Version sent to CSAP
- Version 2.0 Preliminary Screening
- Version 3.0 Detailed Screening
- Version 4.0 ENV Edits
- Decimals for multiple responses within each (e.g. V2.2).

Time Killers to Watch for

• Need to copy interested parties on title. Finding their contact information is sometimes not easy.

Nature: Registration Number: Registration Date and Time: Registered Owner:

Remarks:

MORTGAGE CA5516050 2016-09-20 11:47 COMPUTERSHARE TRUST COMPANY OF CANADA INCORPORATION NO. A0052313 INTER ALIA

- Consultation with off-Site parties Need to provide a copy of all documents. But your documents aren't done until you're ready to submit.
- Situations that require a pre-approval.

Forms / Document Management

- 🛯 0 Draft Versions
- 1 Issued to CSAP
- 2 Preliminary Screening Edits
- 3 Detailed Screening Edits
- 4 ENV Edits

- 7 0 Transmittal 1234 Green Street, Vancouver, BC V1.0.pdf
- 📜 1 CSSA 1234 Green Street, Vancouver, BC_V1.0_Executed.pdf
- 📄 2 Reports

>

>

>

- 3a- AiP Cover Letter 1234 Green Street, Vancouver, BC V1.0.docx
- 3b- AIP 1234 Green Street, Vancouver, BC V1.0 FINAL.docx
- 4 SoSC 1234 Green Street, Vancouver, BC V1.0_Executed.pdf
- 5 SRC 1234 Green Street, Vancouver, BC V1.0_Executed.pdf
- 📆 6a TGD 10 Checklist 1234 Green Street, Vancouver, BC V1.0.pdf
- 搅 6b TGD 11 Checklist 1234 Green Street, Vancouver, BC V1.0.pdf
- 📄 7a Titles and Lot Plans
- 📆 7b Area Search 1 Nov 23 1234 Green Street, Vancouver, BC.pdf
- 搅 7c PID Search xxx-xxx-xxx 1 Nov 23 1234 Green Street, Vancouver, BC.pdf
- 搅 7d Detailed Search Site ID 123 1 Nov 23 1234 Green Street, Vancouver, BC.pdf
- 📆 8a AE22-MW308 V1.0.pdf
- 💵 8b BH Log 1234 Green Street, Vancouver, BC V1.0.xlsx

Forms / Document Management

>

>

>

>

0 - Draft Versions

- 🔁 1 Issued to CSAP
- 2 Preliminary Screening Edits
- 3 Detailed Screening Edits
- 4 ENV Edits

- 0 Transmittal 1234 Green Street, Vancouver, BC DRAFT.docx
- 1 CSSA 1234 Green Street, Vancouver, BC_V1.0_DRAFT.pdf
- 📜 4 SoSC 1234 Green Street, Vancouver, BC DRAFT.pdf
- 📜 5 SRC 1234 Green Street, Vancouver, BC DRAFT.pdf
- 🚈 6a TGD 10 Checklist 1234 Green Street, Vancouver, BC DRAFT.xlsx
- 6b TGD 11 Checklist 1234 Green Street, Vancouver, BC DRAFT.xlsx

Consistency, Consistency, Consistency

The submissions documents are repetitive.

- Lat / Long
- Site Owner
- Applicant
- Agent
- Approved Professionals
- Address / PID
- Site ID

Decide on the above before filling out forms.

- 1 in 8 applications are randomly selected at this stage. If so, you are typically notified within a few working days of submission.
- CSAP (Anna) will check for big picture stuff, similar to the first slide above.
- She will send you a list of issues via an email. You should save that email to the file folder for a record of what drove document edits.
- The quicker you respond, the quicker things move forward.

Submission CSAP # 22-154 Site 15171

Oavid Mitchell

A	D	
		7

To:

Anna Popova <apopova@csapsociety.bc.ca>

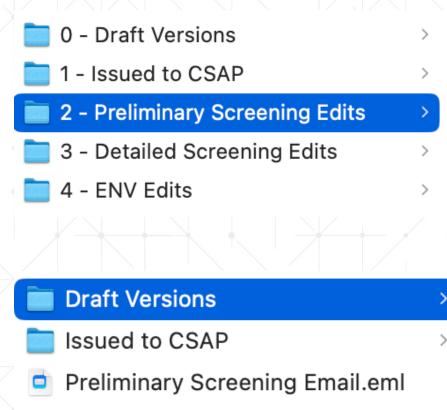
Friday, March 31, 2023 at 9:28 AM

 \bigcirc To protect your privacy, some external images in this message w...

Download external images

Go to Settings

Hi Dave,


There is one typo in legal description for PID 014-782-766: Should be DD2787A(1), not DD3787A(1). Please fix in CSSAF, SRCR and SoSC.

Kindest regards,

Anna Popova

CSAP Society Administrative Screener <u>apopova@csapsociety.bc.ca</u> *Cell 778-994-3300*

CSAPSOCIETY.BC.CA

- Draft Versions >
- Preliminary Screening Email.eml

1 - CSSA - 1234 Green Street, Vancouver, BC_V2.0_DRAFT.pdf
 4 - SoSC - 1234 Green Street, Vancouver, BC_V2.0_DRAFT.pdf
 5 - SRC - 1234 Green Street, Vancouver, BC_V2.0_DRAFT.pdf

- 📄 0 Draft Versions
- 1 Issued to CSAP
- 2 Preliminary Screening Edits
- 3 Detailed Screening Edits
- 4 ENV Edits

Draft Versions Issued to CSAP

Preliminary Screening Email.eml

Draft Versions
 Issued to CSAP
 Preliminary Screening Email.eml

1 - CSSA - 1234 Green Street, Vancouver, BC_V2.0.pdf
 4 - SoSC - 1234 Green Street, Vancouver, BC_V2.0.pdf
 5 - SRC - 1234 Green Street, Vancouver, BC_V2.0.pdf

Preliminary Screening Common Errors

1) Owners of all properties, included in the instrument should be shown in CSSAF and SOSC. Common mistake for AIPs, because they often combine multiple sites.

2) ENV fees cheque for P6 submissions should be always sent to CSAP and never to ENV or MoF directly (unless specifically instructed).

3) Owner's name and legal description should exactly match Land Title.

4) List of reports should be consistent in Transmittal Letter, SOSC Part 3 and certification document Sch. D. Location of appended reports should be clearly shown in Transmittal Letter.

- Detailed Screeners use an excel sheet to check through the submission.
- Primary focus is SOSC and instruments.
- Use the checklist before you submit to double check internally before you submit.

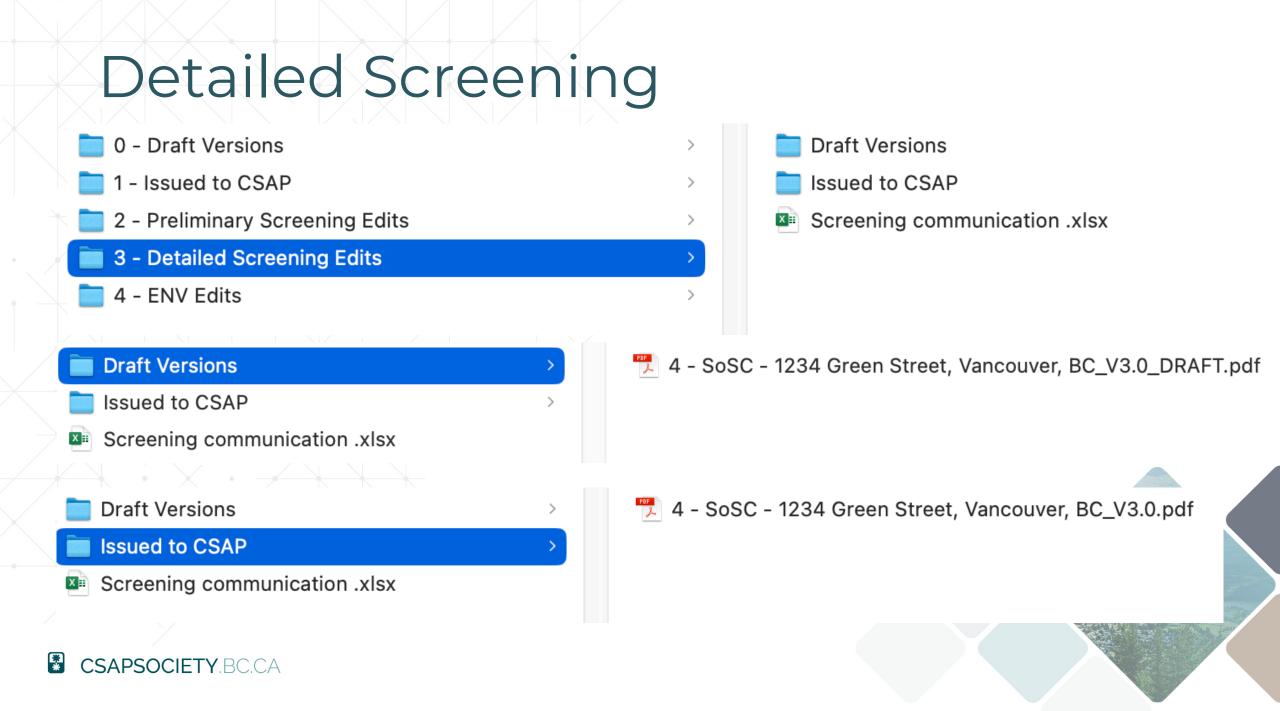
DETAILED ADMINISTRATIVE SCREENING

DRINKING WATER	Applies Y/N	Comment					Reference	Notes
DRINKING WATER	N						<u>P21, TG6</u>	
Does SoSC follow P21 and TG6 as applicable								
AP Response			_	_	_			
GENERAL TOPIC	Item	Point of Review	Yes	No	NA	Comments	Reference	Notes
SHEET - DETAILED SCREENING CHECKLIST								
AP Response								
Screener Response			1	1	-		1	
AP Response								
Screener Response								
Screener Response								
AP Response				-				• · · · · · · · · · · · · · · · · · · ·
Screener Response								
AP Response								
Screener Response								
					SH	EET - SUMMARY OF SITE CONDITION		
Applicable Numerical Concentration Standards and Criteria	4.4b	Vapour (CSR Schedule 3.3): - if other is specified above, include description of assumptions for both current and future development of the site that the selected vapour attenuation factors are based on. Has other been selected and sufficient information provided.		x		please clarify why AW f and no water use both apply or correct.	P22	
AP Response		No Water Use box unchecked. C	Only Awf app	lies			-	
Screener Response								
42.2								l
AP Response								
Screener Response			1			1	1	1
AP Response								13.43
Screener Response								****
AP Response				-				
Screener Response								
					SHE	EET - REGULATORY CONSIDERATIONS		
AP Response								
Screener Response								

SHEET - SUMMARY OF SITE CONDITION

Vapour (CSR Schedule 3.3): - if other is specified above, include description of assumptions for both current and future development of the site that the selected vapour attenuation factors are

based on. Has other been


selected and sufficient

information provided.

х

please clarify why AW f and no water use both apply or correct.

SHEET - SUMMARY OF SITE CONDITION

Vapour (CSR Schedule 3.3): - if other is specified above, include description of assumptions for both current and future development of the site that the selected	x	please clarify why AW f and no water use both apply or correct.
vapour attenuation factors are based on. Has other been selected and sufficient information provided.		

No Water Use box unchecked. Only Awf applies

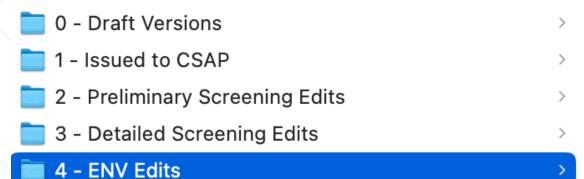
Dear Mr. Green,

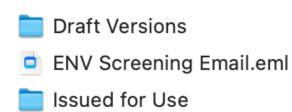
Please be advised that the submission described below has been screened by CSAP and transferred to the Ministry of Environment on September 18, 2023 for final review.

A: Certificate of Compliance with an Approval in Principle Numerical Standards Site id: 2385 Location: 1234 Green Street, Vancouver, BC

Kindest regards,

Anna Popova


CSAP Society Administrative Screener <u>apopova@csapsociety.bc.ca</u> Cell 778-994-3300



ENV Screening

- Most common edits are to the instruments, cover letters and the SOSC.
- Questions of consultation are typically dealt with here.
- By this point, some of your documents could be out of date (e.g., titles).
 - Common that ownership changes occur on properties going through approvals.
 - Lot boundaries and road dedications can occur.

ENV Screening

Draft Versions >
 ENV Scre...g Email.eml
 Issued for Use >

CSAPSOCIETY.BC.CA

F

3a- AiP Cover Letter - 1234 Green Street, Vancouver, BC - V4.0.docx
 3b- AIP - 1234 Green Street, Vancouver, BC - V4.0.docx

Final Step - Follow-up

Once an instrument has been received:

- Confirm it's correct.
- Confirm it's been provided to all parties
- Conditions Inform necessary parties
- Annual Reports Put it in your calendar now or email the Responsible Person to do so.

