Scholarships

- Each year, up to three scholarships are awarded to applied science and engineering graduate students whose studies are relevant to the assessment and remediation of contaminated sites.
- Applications are reviewed and successful applicants chosen by an independent selection panel comprised of Technical Review Committee members

Scholarship Recipients

Sorour Nasimi (Mike Macfarlane Award) – Ph.D. program; Natural Resources and Environmental Studies; UNBC

 Research Topic: Enhancing water security in small, rural, remote, and Indigenous communities in Canada by developing innovative water protection planning strategies and advanced contaminant removal technologies.

Cole Merrill – M.Sc. Program; Earth, Ocean, and Atmospheric Sciences; UBC

• Research Topic: Building a groundwater model for a hypothetical decommissioned limestone mine in central British Columbia.

Amanda Reside – Ph.D. program, Environmental Sciences, University of Guelph

• Sulfolane's environmental fate and risks to wildlife based on a representative sulfolane-impacted site in Alberta.

CSAPSOCIETY.BC.CA

CSAP

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Performance Assessment Committee Lessons Learned

Chair: Jason Christensen, P.Eng.

Note: Correct answers are highlighted in yellow.

What documents are required to be listed within Schedule D of the Certification Document?

- a) Communications with affected parcel
- b) Relevant technical reports
- c) Summary of Site Condition
- d) Resume of submitting AP

When does an indoor use for vapour evaluation need to be considered?

- a) When a building crawlspace is confined space
- b) When the property is vacant with potential redevelopment
- c) Reverted Wildlands
- d) At an urban park with an enclosed concession stand

CSAPSOCIETY.BC.CA

What are possible PCOCs associated a drycleaning facility?

- a) Vinyl chloride
- b) <mark>VPH</mark>
- c) <mark>LEPH</mark>
- d) Methylene chloride

A fill unit extends across multiple contiguous properties. When can the fill be statistically evaluated as a single unit? 1 month

- a) The fill was applied at the same time
- b) The fill unit has the same soil type
- c) The data represents a single population
- d) The properties are defined as Wide Area

CSAPSOCIETY.BC.CA

When do off-site industrial activities **not** need to be considered as an APEC?

- a) A NOM has not been filed at the Industrial site
- b) The Industrial site has a reputable consultant working for them
- c) The likelihood of contamination reaching the Site is very low
- d) The Industrial Site is located cross gradient

Which of the following are examples Type 1 Sites?

- a) Deep soil contamination
- b) Contaminated soil located under municipal sidewalk
- c) Building with vapour barrier
- d) Signage restricting use

Who can prepare a metes and bounds drawing for certification documents?

- a) An approved professional
- b) A civil engineer
- c) A land surveyor
- d) CAD technician

What documents are to be included with a site risk classification with upper cap concentrations?VPH results are less than standard in groundwater

- a) Cross section drawings
- b) <mark>Contour maps</mark>
- c) Exposure pathway questionnaire
- d) Borehole Logs

CSAPSOCIETY.BC.CA

When re-using waste soil on the site as part of an AiP remediation plan, what must be included in the submission?

- a) A map showing where deep rooting vegetation is present
- b) A cross section showing that waste soil is not placed at surface
- c) Sealed record drawing with precise location of contamination
- d) Details on extent and nature of soil contamination

What confidence level should be used in a Mann Kendall test to demonstrate stability for a SLRA?

- a) 95% confidence (alpha = 0.05)
- b) 90% confidence (alpha =0.10)
- c) 85% confidence (alpha =0.15)
- d) 80% confidence (alpha =0.20)

CSAPSOCIETY.BC.CA

The groundwater protection model can be used for sites with confined aquifers?

- a) True
- b) <mark>False</mark>

Which of the following are required for a SLRA submission?

- a) Signed professional statement by QP for habitat assessment
- b) Signed professional statement by QP for contaminant persistence
- c) Signed professional statement by QP for stability assessment
- d) Signed professional statement by QP for overall SLRA

Which of the following standards should soil analytical data be compared against in a DSI?

- a) Numerical matrix standards
- b) Site specific standards
- c) Toxicity reference values
- d) P4 background concentrations

If an APEC is investigated and found to not be contaminated, it does need to be reported in the SoSC?

- a) True
- b) False

Can a sample result be discarded?

- a) Yes, if it is unexpected at the sampling location
- b) Yes, if it is a statistical outlier and replaced with new samples
- c) Yes, if there is a sampling error
- d) No, all samples must be retained

What are PCOCs for a wood waste landfill?

- a) Non-chlorinated phenols
- b) <mark>Metals</mark>
- c) <mark>Sulphides</mark>
- d) PCBs

When may a site be exempt from seasonal groundwater sampling?

- a) Never
- b) In rare circumstances
- c) Tidal influenced sites
- d) Bedrock aquifers

Analytical data obtained for an old AiP was compared to pre-omnibus standards. This data isn't required to be compared to current standards.Precautionary Risk Control should be included and no PVP required

- a) True
- b) <mark>False</mark>

Review of Regional Soil Background Concentrations in BC Meredith Guest, P.Eng., PMP, CSAP Thomas Boerman, M.Sc. Active Earth Engineering

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Review of Regional Soil Background Concentrations in BC

2025-06-19

ENGINEERING LTD

Introduction

Determine if sufficient information is available to support making changes / additions to current BC ENV Protocol 4

Objectives

Key Objectives:

- Identify metals in each region that are posing challenges
- Review practices in other jurisdictions
- Identify areas where potential changes could be considered
- Identify data needed to scientifically support potential changes for the list of background concentrations
- Review current regulatory methods for determining regional soil background

Objectives

Why Revisit Protocol 4?

- Updated and accurate information improves reliability of the dataset & prevents unnecessary remediation costs
- May allow for incorporation of recent data and improved sample data evaluation/statistical approaches
- Ensures relocation of soils with naturally occurring concentrations > CSR stds are managed properly
- Essential to ensure that management practices in BC remain effective, scientifically sound and aligned with current conditions and regulations

Presentation Outline

Overview

- Jurisdictional Review on background soil concentration studies
- Recap on Protocol 4/28 Process
- Review of ENV submissions to date
- Case Study Disposal at Sea database in Lower Mainland

METRO VANCOUVER 201 – 3989 Henning Drive Burnaby, BC V5C 6P8

FRASER VALLEY 304 – 2600 Gladys Avenue Abbotsford, BC V2S 0E9

VANCOUVER ISLAND 968 Meares Street Victoria, BC V8V 3J4

10 – 321 Wesley Street Nanaimo, BC V9R 2T5

REVIEW OF REGIONAL SOIL BACKGROUND CONCENTRATIONS

Jurisdictional / Agency Review

Various sources of background information from other jurisdictions was reviewed.

- Evaluate different approaches
 - Data Collection
 - Statistical Analyses
- Augment or supplement current data set

Jurisdictional / Agency Review

Sources of information included:

- Background Evaluation in Alberta
- US studies that developed background reference values (Oregon and Washington)
- Background Arsenic focused studies (Southwest Oregon & Southern California)
- Soil sample collection & guidance for background estimates used in RAs (Canada)
- Study in the Netherlands that included a 'soil type correction" when evaluating background

Jurisdictional Review Key Take Aways

- Data sets used in these evaluations were quite comprehensive
- Different statistical values were recommended as background reference values
 - (95th percentile, 95th UPL, 95th UCL of 95th percentile)
- Recommended sampling procedures

Jurisdictional Review – Key Take Aways

- Defining region by geophysical properties
 - Considering subregions
- Recognizing influence of environmental factors (soil order, elevation, rock type, soil type)
- Data Collection (depth, soil type, surficial geology, grain size)

Jurisdictional Review – Dutch Method

Netherlands Alternative Approach (2012)

- The study proposed a method "soil type correction" to determine background
- Correction methods include 4 parts:
 - A linear regression model based on clay content and organic matter
 - Soil Type Correction (STC) model using the input parameters from part 1. The STC model normalizes the soil concentration to a 'standard soil' of 25% clay content
 - Natural background concentrations (from field data)
 - Added risk approach

In summary, the background concentrations are normalized for a soil of a 25% weight percentage of clay (and 10% organic content). Concentrations in soils are corrected/normalized for this to check whether background concentrations are exceeded

8.68 6.97 4.65

Soil Background Data Review in BC

The current ENV P4 process was reviewed:

- Identify areas that could be updated/enhanced
- Identify "problematic" metals
- Identify ranges for these parameters
- Review distribution of elevated background parameters (regions, geology, stratigraphy)
- Identify limitations of collected data

Protocol 4 Process

Protocol 4 - (Use Regional Values or Site-Specific approach)

- Option 1 Regional values in Table 1 of Protocol 4
- Based on 487 samples in 63
 locales/sample sites (8 samples per sample site)
- Regional background concentrations in Table 1 where the 95th percentile from this data set

TABLE B - SUMMARY OF REGIONAL BACKGROUND SAMPLE LOCATIONS

Region	Number of samples	Sample Sites (8 samples collected per Sample Site)
1 – Vancouver Island	72	Cassidy, Saanich, <u>Saltspring</u> Island, Cumberland, Campbell River, Victoria, Malahat, Port Alberni, Port Hardy
2 – Lower Mainland	160	Squamish (2x), Port Moody (2x), Maple Ridge, Delta, Burns Bog, Surrey, Abbotsford, Chilliwack, UBC, Stanley Park, Queen Elizabeth Park, Richmond West, Richmond Central, Burnaby Lake, Burnaby North, North Vancouver, New Westminster, Coquitlam
Metro Vancouver	80	UBC, Stanley Park, Queen Elizabeth Park, Richmond West, Richmond Central, Burnaby Lake, Burnaby North, North Vancouver, New Westminster, Coquitlam
3/8 – Thompson/Nicola/ Okanagan	72	Kamloops (2x), Kelowna, Oliver, Merrit, Vernon, Princeton, Salmon Arm, Ashcroft
4 – Kootenay	56	Kimberly, Nelson, Revelstoke, Creston, Castlegar4, Trail2, Invermere, Sparwood, Golden
5 – Cariboo	24	Williams Lake, 100 Mile House, Quesnel/Barkerville
6 – Skeena	48	Kitimat, Smithers, Terrace, Burns Lake, Prince Rupert, Houston
7 – <u>Omenica</u> /Peace	56	Prince George (2x), Dawson Creek, Mackenzie, Fort St. James, Tumbler, Fort St. John

Substance	Region 1 Vancouver Island	Region 2 Lower Mainland	Metro Vancouver ⁷	Region 3/8 Thompson/Nicola/ Okanagan	Region 4 Kootenay ⁸	Region 5 Cariboo	Region 6 Skeena	Region 7 Omineca/ Peace
aluminium	55 000	35 000	35 000	30 000	25 000	25 000	40 000	40 000
antimony	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
arsenic	(4)	8.5	8.5	15	(4)	10	10	10
barium	250	150	90	200	350	250	300	500
beryllium	0.7	0.7	0.7	0.5	0.8	0.3	0.6	1
boron	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
cadmium	0.95	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)
chromium ⁵	65	55	50	70	35	100	40	50
cobalt	30	15	15	20	15	20	15	25
copper	100	75	150	75	35	60	50	70
iron	70 000	30 000	30 000	30 000	30 000	30 000	30 000	40 000
lead	40	200	300	15	120	15	20	25
manganese	5 000	900	1 000	1 000	2 000	850	1 500	1 500
mercury ⁶	0.15	0.3	0.35	0.075	0.085	0.09	0.15	0.09
molybdenum	(1)	4	6	2	(1)	(1)	3	3
nickel	50	75	40	85	50	200	40	60
selenium	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
silver	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
strontium	100	60	55	250	150	250	100	70
sulfur	1 000	2 000	3 000	550	950	800	2 500	450
tin	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
vanadium	200	80	75	85	40	75	85	95
zinc	150	100	90	100	200	85	150	150

Table 1 Protocol 4 - Option 1

Substance	Region 1 Vancouver Island	Region 2 Lower Mainland	Metro Vancouver ⁷	Region 3/8 Thompson/Nicola/ Okanagan	Region 4 Kootenay ⁸	Region 5 Cariboo	Region 6 Skeena	Region 7 Omineca/ Peace
aluminium	55 000	35 000	35 000	30 000	25 000	25 000	40 000	40 000
antimony	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
arsenic	(4)	8.5	8.5	15 📛	(4)	10 📛	10	10 📛
barium	250	150	90	200	350	250	300	500
beryllium	0.7	0.7	0.7	0.5	0.8	0.3	0.6	1
boron	(1)							
cadmium	0.95 📛	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)
chromium ⁵	65	55	50	70	35	100	40	50
cobalt	30	15	15	20	15	20	15	25
copper	100	75	150	75	35	60	50	70
iron	70 000	30 000	30 000	30 000	30 000	30 000	30 000	40 000
lead	40	200	300	15 💳	120	15	20	25
manganese	5 000	900	1 000	1 000	2 000	850	1 500	1 500
mercury ⁶	0.15	0.3	0.35	0.075	0.085	0.09	0.15	0.09
molybdenum	(1)	4 📛	6 🕇	2 👝	(1)	(1)	3	3 📛
nickel	50	75	40	85	50	200	40	60
selenium silver	(4) (1)	(4) (1)	(4) (1)	(4) (1)	(4) (1)	(4) (1)	(4) (1)	(4) (1)
strontium	100	60	55	250	150	250	100	70
sulfur	1 000	2 000	3 000	550	950	800	2 500	450
tin	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
vanadium	200	80	75	85	40	75	85	95
zinc	150	100	90	100	200	85	150	150

Background Soil Concentration Database

- Large percentage of samples <MDL</p>
- Percentage of samples >50% that were < MDL – shown in red</p>

TABLE C - PERCENTAGE OF SAMPLES WITHIN THE REGIONAL BACKGROUND DATABASE WITH CONCENTRATIONS BELOW THE DETECTION LIMIT

0011021111011	OTTO DEED		LOTION EI					
Parameter	Van Island	Lower Mainland	Metro Van	Thompson Nicola	Kootenay	Cariboo	Skeena	Omineca Peace
Aluminum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Antimony	100.0	93.8	87.5	100.0	98.2	100.0	89.6	100.0
Arsenic	100.0	88.1	81.3	91.7	85.7	83.3	77.1	60.7
Barium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Beryllium	10.1	26.3	23.8	16.7	25.0	62.5	45.8	28.6
Boron	100.0	92.5	87.5	100.0	94.6	100.0	85.4	100.0
Cadmium	92.8	93.1	88.8	98.6	76.8	100.0	87.5	100.0
Calcium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chromium	0.0	0.6	0.0	0.0	0.0	0.0	8.3	0.0
Cobalt	0.0	5.6	2.5	0.0	0.0	0.0	16.7	1.8
Copper	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lead	47.8	35.0	21.3	66.7	17.9	25.0	22.9	17.9
Magnesium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Manganese	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mercury	0.0	0.0	0.0	13.9	0.0	0.0	0.0	3.6
Molybdenum	98.6	71.3	67.5	81.9	85.7	95.8	68.8	64.3
Nickel	2.9	5.0	3.8	0.0	0.0	0.0	16.7	0.0
Selenium	100.0	95.0	90.0	100.0	98.2	100.0	89.6	100.0
Silver	100.0	95.0	90.0	100.0	98.2	100.0	89.6	100.0
Sodium	4.4	0.0	0.0	1.4	3.6	0.0	0.0	26.8
Strontium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sulfur	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thallium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tin	100.0	94.4	88.8	100.0	96.4	100.0	89.6	98.2
Vanadium	0.0	1.9	1.3	0.0	0.0	0.0	10.4	0.0
Zinc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zirconium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Protocol 4 – Option 2

- > Option 2
 - In-situ background sampling at appropriate reference site
 - Must be comparable to subject site
 - Can be augmented with ENV data base data (Option 2a)
- This option requires submission to ENV with detailed rationale

ENV Applications Background Metals

ENV Submissions - Option 2

- Records from both CSAP and ENV were reviewed
 - Broken out by Region and by metals parameter
 - 142 Submissions to date
- Limitations
 - Review did not capture soil stratigraphy or surficial geology present

ENV Applications Lower Mainland

Closer look at the Metro Van

Summary of P4 Submissions to ENV

- Van Island (15.5%)
- Lower Mainland (6.3%)
- Metro Van (26.0%)
- Thompson (16.9%)
- Kootenay (3.5)
- Cariboo (1.4%)
- Skeena (15.5%)
- Omenica (2.1%)
- Peace (9.2%)
- Okanagan (3.5%)

- Arsenic (47.9%)
- = Iron (10.6%)
- Chromium (6.3%)
- = Cobalt (6.3%)
- Vanadium (6.3%)
- Barium (3.5%)
- Aluminium (3.5%)
- Lithium (2.8%)
- Nickel (2.8%)
- = Chloride (2.1%)
- Zinc(2.1%)
- Molybdenum (1.4%)
 Copper (1.4%)
- Cadmium /1 /
- Cadmium (1.4%)
- = Sodium (0.7%)
- = Selenium 0.7%)

Problematic Metals and Ranges

Min. Value Max. Value Table 1 Value

Review of Regional Soil Background Concentrations

6/19/2025 Page 32

Problematic Metals and Ranges

Protocol 4 Summary

- Minimal data collection used for basis of current Table 1 values
- More detailed studies and more evaluation in other jurisdictions
- Increased number of submissions
- > Yes! Arsenic is a problem

TABLE D - ENV	APPRO	AFD BUCK	GRUU	ND CONCE	NIRATIO	NS BY A	REA AN	D PARAN	IFLEK		
Parameter	Van Island	Lower Mainland	Metro Van	Thompson	Kootenay	Cariboo	Skeena	Omenica	Peace	Okanagan	Total
Arsenic	10	5	21	3	4	1	10	2	11	1	68
Aluminum	-	1	2	1	-	-	1	-	-	-	5
Barium	1	-	-	2	-	-	-		2		5
Cadmium	-	-	-	-	-	-	2	-	-	-	2
Chromium	4	-	1	4	-	-	-	-	-	-	9
Chloride	1	-	2	-	-	-	-		-	-	3
Cobalt	1	1	1	3	-	-	-	1	-	2	9
Copper	1	1	-	-	-	-	-	-	-	-	2
Iron	-	-	5	2	-	1	5	-	-	2	15
Lithium	2	-	-	1	1	-	-	-	-	-	4
Molybdenum	-	-	1	1	-	-	-			-	2
Nickel	1	-	-	3	-	-	-	-	-	-	4
Selenium	-	-	-	1	-	-	-	-	-	-	1
Sodium	-	-	1	-	-	-	-	-	-	-	1
Vanadium	1	1	2	3	-	-	2	-	-	-	9
Zinc	-	-	1	-	-	-	2	-	-	-	3
Total	22	9	37	24	5	2	22	3	13	5	142

<u>LEGEND</u>

Disposal at Sea (DAS) Database

- Disposal at Sea is a federally regulated permit system for disposal of nonhazardous substances into allocated offshore locations
- DAS soil permits require material to be chemically inert, inorganic and undisturbed
- Soil suitability is determined through a sequential process
- DAS database contains approximately 1,400 samples within Region 2 and Metro Vancouver

DAS Database – Advantages and limitation

- Good approximation to naturally occurring 'undisturbed' soil
- The database has a significant size and contains useful supplemental data (9x size of the currently used P4 data for Region 2)
- Covers a range of 8 different surficial geology (sub-)classes
- Limited to Region 2 and Metro Vancouver
- Some parameters (Iron) are not regulated for DAS

	Disposal <u>a</u>	t Sea Screening Crite	000 04 44- ((4)			
Decomotor		CE	PA	CSR Standards (mg/kg)		
Parameter	CCME Marine ISQG Guidelines	Disposal at Sea Screening Concentrations	Point Grey Background	Residential Low- Density	Residential High-Density	
Arsenic (As)	7.24	-	-	10	10	
				1	1	
Cadmium (Cd) ¹⁾		0.6	-	3	3	
	-			20	20	
				30	40	
Chromium (Cr)	52.3	-	-	60	60	
				75	75	
Copper (Cu)1	-	-	31.7	100	100	
				150	300	
Lead (Pb)	30.2	-	-	120	120	
Mercury (Hg)	-	0.75	-	10	25	
7inc (7n)1	124	_	_	150	150	
200 (20)	124			200	200	

DAS Database

- DAS data includes more than just the metal concentrations grain size!
- Surficial geology class was matched based on Lat/Lon

Following compilation of the database, we explored two pathways:

- 1. Background concentrations based on DAS data compared to current Region 2/Metro Van background concentrations
- 2. Background concentrations based on DAS data for each major surficial geology class

Results – Background concentrations based on DAS

- 95th Percentile of the DAS data are generally lower than the current standards for Region 2 and/or Metro Vancouver
- 95th Percentile for Barium, Beryllium, Cadmium, Mercury, Nickel and Strontium are higher than Region 2 and/or Metro Van background concentrations

Parameter	Region 2 – Lower Mainland Background concentration (mg/kg)	Metro Vancouver Background concentration (mg/kg)	Number of samples in DAS Database	DAS Derived Background Concentration (95th percentile, in mg/ <u>kg)*</u>
Aluminum (Al)	35,000	35,000	18	15,400
Antimony (Sb)	4	4	1347	1
Arsenic (As)	8.5	8.5	1388	5
Barium (Ba)	150	90	1347	133
Beryllium (Be)	0.7	0.7	1338	1
Boron (B)	1	1	38	0.6
Cadmium (Cd)	0.4	0.4	1365	0.5
Chromium (Cr)	55	50	1376	30
Cobalt (Co)	15	15	1347	12
Copper (Cu)	75	150	1415	35
Iron (Fe)	30,000	30,000	0	-
Lead (Pb)	200	300	1375	6.1
Manganese (Mn)	900	1,000	24	419
Mercury (Hg)	0.3	0.35	1348	0.5
Molybdenum (Mo)	4	6	1347	0.6
Nickel (Ni)	75	40	1347	54
Selenium (Se)	4	4	1347	0.5
Silver (Ag)	1	1	1347	0.5
Strontium (Sr)	60	55	544	67
Thallium (Tl)	-	-	1346	0.5
Tin (Sn)	4	4	1335	0.5
Vanadium (V)	80	75	1349	71
Zinc (Zn)	100	90	1373	63

 Values in red indicate the metals where the derived DAS Background Concentration is higher than the Background concentration for <u>Region 2</u> and/or Metro Vancouver.

Results – Grain Size Considerations

Concentrations for metals:

- Higher in samples with higher weight percentages of clay and silt
- Lower in samples with higher weight percentages of sand and gravel.

Results – Surficial geology class

The DAS database covered a total of 8 surficial classes, including Capilano Sediments (C), Pre-Vashon Deposits (PV), Salish Sediments (SA), (Pre-)Tertiary bedrock (T) and Vashon Drift and Capilano Sediments (VC)

Results – Surficial geology class

We also compared the metal concentration distributions for problematic metals to their current background concentrations

6/19/2025 Page 42

Background Concentrations per Surficial Geology Class

Surficial Geology Background Concentrations:

- Barium, Cadmium, Mercury, Strontium and Vanadium are higher than the current Region 2 and/or Metro Vancouver background concentrations
- The results show significant discrepancies in metal concentrations between surficial geology classes – i.e., Arsenic in Capilano sediments is 68% higher than in Salish sediments

Parameter	c	Region 2 – Lower Mainland Background concentration	Metro Vancouver Background concentration (mg/kg)	Vashon Drift and Capilano Sediments – VC (VC, VCa and VCb)	Capilano Sediments – C (Ca, Cb and Cd)	Salish sediments – SA (SAa, SA-C, SAb, SAi)	Tertiary Bedrock - T
_		(ilig/kg)		942 samples	225 samples	152 samples	62 samples
Antimony (Sb)		4	4	0.5	0.5	0.5	0.5
Arsenic (As)		8.5	8.5	4.7	6.4	3.8	4.3
Barium (Ba)		150	90	137.2	128.7	114.2	115.8
Beryllium (Be)		0.7	0.7	0.5	0.5	0.5	0.5
Cadmium (Cd)		0.4	0.4	0.5	0.2	0.5	0.2
Chromium (Cr)		55	50	28.2	46.1	23	26.1
Cobalt (Co)		15	15	11.1	13.1	10.7	14.7
Copper (Cu)		75	150	34.1	37.4	28.4	34.9
Lead (Pb)		200	300	6.1	5.3	6.1	8.8
Mercury (Hg)		0.3	0.35	0.5	0.04	0.5	0.03
Molybdenum (I	(olv	4	6	0.5	0.6	1.1	2
Nickel (Ni)		75	40	20.7	32.3	16.9	20.8
Selenium (Se)		4	4	0.5	0.5	0.5	0.5
Silver (Ag)		1	1	0.5	0.5	0.5	0.5
Strontium (Sr)		60	55	69.7	68.5	55.6	44.1
Thallium (Tl)		-	-	0.5	0.5	0.5	0.5
Tin (Sn)		4	4	0.5	0.04	0.5	0.03
Vanadium (V)		80	75	70	79.7	66.6	71.2
Zinc (Zn)		100	90	60	60	71	79.2

DAS results – overall results

- The background concentrations for metals derived using the DAS data, show overall higher background concentrations for **Barium**, **Cadmium**, **Mercury**, **Strontium** and **Vanadium** and lower background concentrations for other metals, including metals frequently requiring approvals from ENV (i.e., **arsenic, chromium, cobalt**)
- The soil grain size results show higher metal concentrations for all metals in finer soils (silts and clays) and lower metal concentrations in coarser soils (sands and gravels). The different surficial geology classes show significantly different grainsize distributions
- Some regions (Richmond, Delta etc.) and surficial geology classes (Fraser River Sediments) remain underrepresented (or not represented at all) in the database, hence outliers in those regions would not be captured in the current data

Recommendations & Conclusions

- Current Protocol 4 Table 1 values are based on a relatively small data set with large percentage of data points being <MDL and collected over 30 years ago</p>
- > As more data is acquired updating of database should be considered
 - Augment current dataset with ENV submissions and potential other data sources
 - Evaluate regional boundaries with geology and surficial geology classes
 - Add grain size, soil type and regional geology to submission database
 - Consider subregions within existing boundaries to recognize enriched areas (Arsenic in Richmond)
- Alternative statistical value for background threshold
- Finer materials (clays, weather materials, sediment contribute to elevated background values (particularly arsenic)

Recommendations & Conclusions

- We understand that CSAP and the TRC are expanding on this study with an additional initiative this year
- Focus to be on the Lower Mainland for further review using additional data from ENV and other sources

Background Groundwater Concentrations in BC

Aio Haberli, M.Sc., P.Chem., CSAP PGL Environmental Consultants

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Background Groundwater Concentrations in BC

CSAP TRC Project

Land Acknowledgement

We are gathering on the unceded and ancestral territories of the x^wməθk^wəy'əm (Musqueam), S<u>k</u>wx<u>w</u>ú7mesh (Squamish), and səlilwətał (Tsleil-Waututh) Nations.

PGL Project Team

Report authors...

Tom Berger, B.Sc., P.Geo.

Katie Scott, B.Sc., R.P.Bio.

Melissa Pitz, M.Sc., P.Geo.

Ingo Lambrecht, P.Geo., CSAP

Aio Haberli, M.Sc., P.Chem., CSAP

Guidance, feedback & review...

Bob Symington (Gandalf Consulting)

Christine Thomas (WSP Canada)

Ian Hers (Hers Environmental Consulting)

Guidance, feedback, review, datasets and file retrieval...

Lavinia Zanini

Kerri Skelly

Patricia Fortin

Roberto Prieto

File retrieval...

Patricia Fu

Stephanie Kwok

Insights into 2018 Project...

Stephen Munzar (Core6 Environmental)

2018 background study - recap

2024 background study

- Scope and goals
- Methodology
- Results
- Recommendations

ENV identified 5 regions of interest to attempt establishing background in groundwater...

✓ urban centers with plenty of Site IDs and *potential* suitable sites

✓ surficial geology thoroughly characterized

✓ abundance of P9s

✓ Site IDs

✓ surficial geology

✓ P9s (CSAP webmap)

Robust dataset in 3 existing regions

		Protocol 9 Sites		Determinations		Contaminated Sites		Total Sites	
Region	Sub-region	With reports	Used	With reports	Used	With reports	Used	With reports	Used
Lower Mainland	Sub-region 1	- 41	24	49	22	n/a	20	180	80
Lower Mainland	Sub-region 2					90	19		80
Thompson - Okanagan	(Kamloops)	10	3	6	5	30	2	46	22
	(Kelowna)	5	2	4	4	31	7	40	23
South Vancouver Island	-	6	3	3	1	70	26	79	30
Northeast BC (Fort St. John / Dawson Creek)	-	4	4	1	0	5	4	10	8
Prince George	-	2	2	1	1	3	1	6	4
Total		68	38	64	33	229	84	361	155

Insufficient background sites (n<10) in two regions

	Sub-region	Protocol 9 Sites		Determinations		Contaminated Sites		Total Sites	
Region		With reports	Used	With reports	Used	With reports	Used	With reports	Used
Lower Mainland	Sub-region 1	41	24	40	22	n/a	20	190	90
Lower Mainland	Sub-region 2	41	41 24	49	22	90	19	100	80
Thompson - Okanagan	(Kamloops)	10	3	6	5	30	2	46	22
	(Kelowna)	5	2	4	4	31	7	40	23
South Vancouver Island	-	6	3	3	1	70	26	79	30
Northeast BC (Fort St. John / Dawson Creek)	-	4	4	1	0	5	4	10	8
Prince George	-	2	2	1	1	3	1	6	4
Total		68	38	64	33	229	84	361	155

Established 3 background regions

Thompson - Okanagan

Lower Mainland SR 1 (fluvial lowlands)

Lower Mainland SR 2 (glacial uplands)

South Vancouver Island

Lower Mainland SR 1 (fluvial lowlands)

Lower Mainland SR 2 (glacial uplands)

It is important to consider that in many areas of the Lower Mainland, the Sub-Region 2 deposits underlie those of Sub-Region 1, and as such, consideration of site geology at depth should also be made when determining which regional background concentration should apply to a given site during an environmental investigation. Similarly, the shallow glacial deposits that make up Sub-Region 2 are commonly underlain by Pre-Vashon glacial sediments, which have been mapped as regional aquifers (e.g. Quadra Sands). These deposits are also in many cases the material targeted by domestic water wells as assessed in the Wilson et al. (2008) study. And due to their distinctly different chemistry as discussed in Section 3.6.2, data from these sufficial geologic units have been removed from inclusion into the Sub-Region 2 dataset. Given that the regional background concentrations are distinctly different in the underlying aquifers compared to that of the overlying finer grained glacial deposits (often regarded to as aquitards), it is not recommended that

Page 20

"in many areas of the Lower Mainland, Sub-region 2 deposits underlie those of Sub-region 1..."

Additional sites needed for 2 regions

Northeast BC (Fort St. John / Dawson Creek)

Prince George

Table 1.

P9 - background concentrations greater than DW and/or AW

Regional estimates for local background concentrations in groundwater for inorganic

substances							
Region	Lower Mainland	Lower Mainland	Thompson	Southern Vancouver			
	Sub-Region 1	Sub-Region 2	Okanagan Region	Island Region			
Substance	Background	Background	Background	Background			
	concentration	concentration	concentration	concentration			
Aluminum	330	180	230	110			
Antimony	1.6	2.9	2.7	2.0			
Arsenic	38	13	13	9.0			
Barium	490	170	240	250			
Beryllium	0.56	3.3	1.3	2.0			
Boron	820	670	880	640			
Cadmium	0.97	0.56	0.33	1.0			
Chromium	12	3.9	19	3.0			
Cobalt ²	<u>62</u>	18	16	14			
Copper	14	13	32	8.0			

CSAP RFP - Purpose

"natural background levels of metals in groundwater are still an issue at sites in other parts of the province including the Northeast BC Region and the Prince George Region"

"the purpose of this project would be to expand the dataset such that background concentrations for groundwater could potentially be developed for other regions of the province"

CSAP RFP – Tasks

- 1. Review the 2018 Background Study methodology used to identify suitable background sites
- 2. Identify additional sources of information for potential background sites (BCER, etc.)
- 3. Conduct additional searches of the Site Registry Database for potentially suitable background sites added since 2018
- 4. Conduct statistical evaluation of database
- 5. Prepare a summary report
- 6. Prepare presentation for CSAP event

Challenges

- File retrieval of hard copy reports resource intensive (ENV)
- Database scrubbing laborious (PGL)
 - validating Site ID locations
 - remove duplicate sites (affected parcels, cross reference 2018 study)
 - due diligence (spelling municipalities)
 - coding new regions (assign municipalities to areas of interest)
 - merging of 2 databases

Challenges

- Report reviews (& data extraction) time consuming (PGL)
- Adding data to established regions could change background values
- Adjustments due to budget and timeline constraints

Adjusted Scope & Goals

- No expansion of dataset for 3 established regions
- × No data extraction from reports, no statistics
- ✓ Review methodology
- ✓ Communication with BCER
- ✓ Identify new sites for Prince George and NE BC, obtain and review reports to assess if sufficient suitable sites available to establish background
- ✓ Identify new areas of interest (AOIs) outside the footprint of the established 3 background regions

Review Methodology

Methodology

Methodology adopted from 2018 background study...

Identification of potential background sites for evaluation

- 'Filter' was developed by ENV to prepare dataset from Site Registry with Site IDs for further evaluation
- Site IDs were only retained in dataset if application or submission ...
 - o P9s
 - o Determinations (not contaminated)
 - o AiPs & CofCs
 - o investigation reports (S2, DSI, etc.)

Two ENV datasets 'filtered' for Site IDs...

• pre-2018

• 2018-2024

Pre-2018 dataset

- Site IDs from years 2018 and prior
- separate spreadsheets for new AOIs
- "raw format" with multiple listings per Site ID
- needed coding for 'highest tier' application type

Site 🖃	Common Name 🛛 👻	Notation Type and Act 🛛	Service 🔹	Initiated Date 💌	Ministry Conta 🔻	Notation Notes	Require	Comple
2382	Shell Bulk Plant- Penticton(Wade Avenue)	CERTIFICATE OF COMPLIANCE ISSUED USI		12-Feb-2009	LOCKHART, DAVE	Issued On The Recommenda	ti No Action	12-Feb-20
2382	Shell Bulk Plant- Penticton(Wade Avenue)	CERTIFICATE OF COMPLIANCE ISSUED USI		12-Feb-2009	LOCKHART, DAVE	Issued On The Recommenda	ti No Action	12-Feb-20
2382	Shell Bulk Plant- Penticton(Wade Avenue)	CERTIFICATE OF COMPLIANCE ISSUED USI	CofC	12-Feb-2009	LOCKHART, DAVE	Issued On The Recommenda	ti No Action	12-Feb-20
2382	Shell Bulk Plant- Penticton(Wade Avenue)	SITE INVESTIGATION REPORT SUBMITTED.		13-Jul-1993	BOYES, DARRYL K	Title: Penticton Bulk Plant, 7	9 No Action	13-Jul-199
2382	Shell Bulk Plant- Penticton(Wade Avenue)	SITE INVESTIGATION REPORT SUBMITTED.		25-Oct-1993	BOYES, DARRYL K	Title: Shell Canada Products	L No Action	25-Oct-199
2382	Shell Bulk Plant- Penticton(Wade Avenue)	SITE INVESTIGATION REPORT SUBMITTED.		18-Jun-1996	BOYES, DARRYL K	Title: Phase Iv Subsurface In	v No Action	18-Jun-19
2382	Shell Bulk Plant- Penticton(Wade Avenue)	SITE INVESTIGATION REPORT SUBMITTED.		18-Jun-1996	BOYES, DARRYL K	Title: Penticton Shell Bulk Pl	a No Action	18-Jun-19
2382	Shell Bulk Plant- Penticton(Wade Avenue)	SITE INVESTIGATION REPORT SUBMITTED.		22-Oct-1992	BOYES, DARRYL K	Title: Penticton Bulk Plant, 7	9 No Action	22-Oct-19

2018-2024 dataset

- all Site IDs for all of BC for years 2018-2024
- single entry per Site ID
- coded for 'highest tier' application type

	U		.	•	¥	· · ·			
SiteID 🖵	ApplicationID 🔻	Priority 💌	ReceivedDate	CommonName 💌	SiteCity 🔽	RiskDesignatior 💌	CSAPRef 💌	Service 🔹	S
38	13170		2022-06-03	SHELL SERVICE ST	NORTH VANCOUVER	Non-High Risk	22-023	Certificate of Compliance - nu	n C
48	13058		2022-05-09	SHELL CANADA - 7	PRINCE GEORGE	UnClassified	22-003A	Certificate of Compliance - de	t C
86	11973		2021-08-03	8188 & 8232 MAN	VANCOUVER	Non-High Risk		Approval in principle	F
91	15082		2024-04-25	45696 YALE ROAD	CHILLIWACK	Non-High Risk	24-002 A	Certificate of Compliance - de	t C
108	12427		2021-11-29	FRASER LANDS	VANCOUVER	Non-High Risk		Approval in principle	ŀ
100	15766		2024 06 21	WEST MINISTED DI		Liab Disk		Cartificate of Compliance day	+ 1

		number of Site IDs
Municipalities	total (iMap)	
Cawston	2	
Kaleden	3	
Keremeos	7	
Naramata	5	
Okanagan Falls	12	
Oliver	26	
Osoyoos	23	
Penticton	177	
Summerland	17	
Total	272	

11	PGL
ENVIRONMEN	TAL CONSULTANTS

database filter...

	number of Site IDs						
Municipalities	total (iMap)	ENV pre-2018	ENV 2018-2024				
Cawston	2						
Kaleden	3						
Keremeos	7	5					
Naramata	5	1					
Okanagan Falls	12	3					
Oliver	26	5	1				
Osoyoos	23	10					
Penticton	177	76	7				
Summerland	17	6					
Total	272	106	8				

... removes ~60% of Site IDs

Methodology - Suitable Sites

Site ID \neq suitable background site

- duplication (off-site migration)
- reports not available

. . .

- cannot verify sampling procedures
- background well selection criteria

Methodology - Well Screening

Background Well Selection Criteria

- ✓ dissolved metals and/or metalloid data
- ✓ screened in shallow aquifers
- ✓ borehole logs
- ✓ known location
- × bedrock
- screened within fill or backfill
- influenced by secondary contaminant release processes
- DL > standard

Methodology - Well Screening

screening in 2018 study...

		Protocol 9 Sites		Determinations		Contaminated Sites		Total Sites	
Region	Sub-region	With	Used	With	Used	With	Used	With	Used
		reports		reports		reports		reports	
Lower Mainland	Sub-region 1	41	24	49	22	n/a	20	180 —	48
	Sub-region 2					90	19		32
Thompson Okanagan	Kamloops	10	3	6	5	30	2	46	10
Thompson - Okanagan	Kelowna	5	2	4	4	31	7	40	13
South Vancouver Island	-	6	3	3	1	70	26	79	30
Northeast BC	-	4	4	1	0	5	4	10	0
(Fort St. John / Dawson Creek)									0
Prince George	-	2	2	1	1	3	1	6	4
Total		68	38	64	33	229	84	361	155

...removed ~50% of sites

Methodology - Statistics

Background Calculation - Sites

- generally according to P9
- 95th percentile of multiple sampling events per MW
- 95th percentile if multiple MWs per site

Methodology - Statistics

Background Calculation – Region

- minimum 10 suitable sites for establishing background region
- outlier tests, data distribution analysis (QQ plot, etc.), ANOVA
- Background calculated as 95th percentile of all sites

Methodology - Potential New Regions

BC Soil Survey

supplementary information

Soils of the Okanagan

and Similkameen Valleys

MOE Technical Report 18

Methodology – Aquifer Mapping

BC Water Resources Atlas

□ Communicate with **BCER**

• BCER does have reports, reclamation, clean up, etc. but the information and reports are not in any database

• BCER in discussion how to organize groundwater data

• difficult to get information from sites prior to 2005 if the sites were deemed clean or remediated

□ Identify new sites for NE BC and Prince George, obtain and review reports to assess if sufficient potential background sites available ($n \ge 10$)

2018 study identified 7 suitable sites, not sufficient to established if areas can be combined into single region

Dawson Creek glaciomarine deposits Fort St. John *till deposits*

municipalities >60 km apart

distinct geology

Till or Glacial Diamict Deposits

Glaciolacustrine Deposits

Peace-Beatton Aquifer Mapping and Hydrostratigraphic Characterization

Tibor Lengyel, Andrew Hinnell, and John J. Clague

Kiskatinaw-Peace Aquifer Mapping and Hydrostratigraphic Characterization

Tibor Lengyel, Judit Deri-Takacs, Andrew Hinnell, and John J. Clague

2022 / 2023 aquifer mapping reports for Ft. St. John and Dawson Creek areas

aquifer mapping reports with cross sections and geology information

confined glaciofluvial sand and gravel aquifer underneath or in between till

unconfined glaciofluvial sand and gravel aquifer

BUT, sites with shallow GW in Ft. St. John, unconfined and not within mapped aquifer

additional P9s in Chetwynd & Tumbler Ridge

9 new sites since 2018 from ENV dataset...

Region	CofC	P9	Total
Northeast BC	5	4	9
DAWSON CREEK		2	2
FORT ST. JOHN	5	2	7
Total	5	4	9

...5 retained as candidates for background sites after removal of duplicates and report review

Potential Background Sites (PGL)

 \bigcirc

Suitable Background Sites (Core6)

SUMMARY

Reached 10 background sites for region when both municipalities are combined

NEXT STEPS

- data extraction from reports
- statistics if municipalities can be combined or divided into subregions to establish background
- > assess if region can be expanded (Chetwynd, Tumbler Ride)

2018 study identified 4 suitable sites

glaciolacustrine and glaciofluvial deposits

BUT, very shallow and very deep water tables...

elevation heat map

low lying area

low lying areas with shallow GW

likely that all MWs with shallow and deep GW tables screened in same mapped unconfined aquifer

14 new sites since 2018 from ENV dataset...

Region	AiP	CofC	Determination (Final)	P9	Total
PRINCE GEORGE	1	9	2	2	14
Total	1	9	2	2	14

...retained 6 as candidates for background sites after removal of duplicates and report review

Potential Background Sites (PGL)

 \bigcirc

Suitable Background Sites (Core6)

SUMMARY

Reached 10 background sites when considering shallow and deep groundwater screened in same geological unit and unconfined aquifer

NEXT STEPS

- > data extraction from reports
- statistics to assess if data of the same population and establish background, if possible

Identify new areas of interest (AOIs) outside the footprint of the established three background regions

Columbia River catchment

Skeena-Bulkley catchment

Penticton (Okanagan Basin)

Mid-Island

2018-2024 dataset

...used to evaluate number of Site IDs available in regions

			Determination	Determination		
Row Labels	AiP	CofC	(Final)	(Preliminary)	P9	Grand Total
Lower Mainland	129	340	78	8	10	565
South Vancouver Island	22	56	9		2	<mark>8</mark> 9
Thompson-Okanagan	4	40	3		4	51
Northeast BC		5			4	9
Prince George	1	9	2		2	14
Rest of BC	13	100	17	3	10	143
Grand Total	169	550	109	11	32	871

Instruments and decisions since 2018

where are site IDs outside the established regions?

Row Labels	AiP	De CofC	etermination (Final)	Determination (Preliminary)	P9	Grand Total
Rest of BC	13	100	17	3	10	143

			Determination	Determination		
Row Labels	AiP	CofC	(Final)	(Preliminary)	P9	Grand Total
Lower Mainland	129	340	78	8	10	565
South Vancouver Island	22	56	9		2	89
Thompson-Okanagan	4	40	3		4	51
Northeast BC		5			4	9
Prince George	1	9	2		2	14
Rest of BC	13	100	17	3	10	(143)

Potential Regions	AiP	CofC	Determination (Final)	Determination (Preliminary)	P9	Total
Penticton	1	4	1	1	1	8
Mid-Island	1	14	3	1	2	21
Skeena-Bulkley	3	23	2		1	29
Columbia River		25	1		4	30
Total	5	66	7	2	8	(88) +

60% of total

80% P9s

Soils of the Okanagan

and

Similkameen Valleys

MOE Technical Report 18

unconfined and bedrock aquifers

~90 potential sites for further evaluation after removing duplicates

Municipality	P9	Determination	CofC	AiP	Investigation Report	Total
2018-2024 Dataset	2	2	4			8
Oliver		1				1
Penticton	2	1	4			7
Pre-2018 Dataset	2	6	30	4	38	80
Keremeos			2		3	5
Naramata					1	1
Okanagan Falls			1		2	3
Oliver		1	1	1	2	5
Osoyoos	1		3		5	9
Penticton	1	5	22	4	20	51
Summerland			1		5	6
Total	4	8	34	5	38	89

example of summary table with Site IDs for further evaluation

Table 4 List of Site IDs for Penticton Background Groundwater Concentrations at Sites in British Columbia CSAP Society, PGL File 4136-230.01

Site ID	City/Town/Hamlet	Service	Received Date	Completed Date	Database
348	Penticton	Investigation Report		09-Jul-1990	pre-2018
415	Penticton	Investigation Report		15-Jul-1992	pre-2018
766	Penticton	CofC		14-Jan-2009	pre-2018
1101	Penticton	CofC		12-Aug-2004	pre-2018
2224	Osoyoos	Investigation Report		05-Oct-1993	pre-2018
2225	Osoyoos	Investigation Report		05-Oct-1993	pre-2018
2235	Osoyoos	Investigation Report		30-Aug-1993	pre-2018
2237	Osoyoos	P9		16-May-2014	pre-2018
2241	Osoyoos	Investigation Report		08-Jul-1993	pre-2018
2271	Oliver	AiP		06-Dec-1996	pre-2018
2272	Keremeos	Investigation Report		29-Jul-1992	pre-2018
2281	Okanagan Falls	Investigation Report		24-Mar-1994	pre-2018
2348	Penticton	Investigation Report		07-Mar-1996	pre-2018
2356	Keremeos	CofC		25-Jul-1996	pre-2018
2358	Penticton	Investigation Report		16-Dec-1993	pre-2018
2361	Penticton	CofC		29-Apr-2013	pre-2018
2380	Summerland	Investigation Report		03-Nov-1994	pre-2018
2382	Penticton	CofC		12-Feb-2009	pre-2018
2395	Penticton	CofC	2021-11-24		2018-2024

SUMMARY

- Penticton with ~60 sites, 2 of which P9s
- Surrounding municipalities with an additional ~30 sites
- Surficial geology (fluvial, glaciofluvial, glaciolacustrine, and colluvium) similar to established region to the north

CONCLUSION

likely feasible to establish background

Mid-Island

Mid-Island

surficial geology & aquifer mapping

~100 potential sites for further evaluation after removing duplicates

Municipality	P9	Determination	CofC	AiP	Investigation	Total
					Report	
2018-2024 Dataset	1	4	10	1		16
Campbell River	1	2	6			9
Comox		1	2			3
Errington			1			1
Parksville		1				1
Qualicum Beach			1			1
Union Bay				1		1
Pre-2018 Dataset		5	29	3	51	88
Bowser					1	1
Campbell River		2	13	1	16	32
Comox			1		2	3
Courtenay		1	12	2	15	30
Cumberland					3	3
Errington		1			1	2
Fanny Bay					1	1
Nanoose Bay			1		1	2
Parksville		1	1		7	9
Qualicum Beach			1		4	5
Total	1	9	39	4	51	104

Mid-Island

SUMMARY

- Just a single P9 (Campbell River)
- Campbell River ~40 sites
- Surficial Geology similar to established region to the south (quaternary alluvium and cover materials)
- Mapped aquifers within the quaternary deposits that blanket the area
- Most sites from pre-2018 (hardcopy file retrieval)
- Lots of gas/service stations
- Saltwater intrusion

CONCLUSION

> potentially feasible to establish background

surficial geology

~70 potential sites for further evaluation after removing duplicates

Municipality	P9	Determination	CofC	AiP	Investigation	Total
2019 2024 Datas at	4	2	10	2	кероп	16
2018-2024 Dataset	1	۷۲	10	3		10
Burns Lake			2	1		3
Kitimat			3	1		4
Smithers	1		1			2
Terrace		2	4	1		7
Pre-2018 Dataset		5	21	6	25	57
Burns Lake			1		1	2
Cedarvale					1	1
Decker Lake				1	1	2
Houston			5	1	2	8
Kitimat		1	1	1		3
Smithers		1	4	1	9	15
Telkwa					1	1
Terrace		3	8	2	10	23
Topley			2			2
Total	1	7	31	9	25	73

SUMMARY

- Just a single P9 (Smithers)
- Terrace with ~30 Site IDs
- Most sites from pre-2018 (hardcopy file retrieval)
- Surficial geology variable in the Skeena-Bulkley corridor
- Aquifer mapping sparse

CONCLUSION

region would potentially have to be divided into separate subregions based on local surficial geology:

- Prince Rupert to Terrace Bedrock
- Terrace to Kitimat Glaciofluvial/Alluvial
- Terrace to the Hazeltons Bedrock/Glacial Till
- Hazeltons to Smithers Glacial Till

> non-zero possibility to establish background in subregions

aquifer mapping

This document was produced by scanning the original publication. Ce document a été produit par umérisation de la publication originale

Α

At

Af

Afi

Avf

SURFICIAL GEOLOGY COLUMBIA RIVER VALLEY - DONALD TO REVELSTOKE

R.A. Achard - 1969-70

LEGEND

Fluvial and alluvial deposits (postglacial to present)

Alluvium: floodplain deposits, deltas; mainly sand with minor gravel, silt and organic materials.

Stream terrace: dominantly gravel but in many places terrace surface is overlain by <2 m of sand and silty sand.

Fan (active): generally coarse bouldery and blocky gravel near fan apex and finer poorly sorted gravel near fan toe.

Fan (inactive): as above but no longer subject to sediment deposition.

Debris-avalanche fan: cone of angular debris at bottom of an avalanche-chute, with levee banks and avalanche-chute locally included.

surficial geology

~60 potential sites for further evaluation after removing duplicates

Municipality	P9	Determination	CofC	AiP	Investigation Report	Total
2018-2024 Dataset	4	1	17			22
Canal Flats	1	1				2
Golden			1			1
Invermere	1					1
Jaffray			4			4
Nakusp			6			6
Radium Hot Springs			1			1
Revelstoke			2			2
Windermere	2		3			5
Pre-2018 Dataset		3	21	3	14	41
Canal Flats			1			1
Golden			9		6	15
Invermere			3		2	5
Nakusp					2	2
Radium Hot Springs					2	2
Revelstoke		3	8	3	2	16
Total	4	4	38	3	14	63

SUMMARY

- several P9s
- most sites from pre-2018 (hardcopy file retrieval)
- aquifer mapping sparse in some areas
- surficial geology along the valley generally fluvial and glaciofluvial in origin in the low-lying areas

CONCLUSION

non-zero possibility to establish background

CONSIDERATIONS

- Review alternative statistical methods for municipalities/regions where less than 10 suitable background sites are available but local Protocol 9 Determinations were granted
- Provincial monitoring well network typically deep wells in DW aquifers, but check shallow observation wells in new AOIs (piper plots, etc.)
- Significant ENV resources needed for evaluation of new AOIs (file retrieval, review, meetings)

CONCLUSION & OUTLOOK

- No new backgrounds established
- ✓ Project laid foundation for further work

- > ENV digitizing hardcopy repository (file retrieval)
- > Al powered data extraction from reports

RECOMMENDATION

- Possibly surrounding area

RECOMMENDATION

"Major" project

Further evaluate other AOIs in order of decreasing likelihood for success

- Mid-Island
- Columbia River
- Skeena-Bulkley

BC Solve & simplify

www.pggroup.com

VANCOUVER VICTORIA FRASER VALLEY TORONTO

Poll: Schedule 2 or Not?

David Mitchell, P.Eng.

SOCIETY OF CONTAMINATED SITES APPROVED PROFESSIONALS OF BRITISH COLUMBIA

Fire station with storage of PFAS containing Aqueous Film-Forming Foam (AFFF) that does not conduct onsite training exercises represent a Schedule 2 activity?

- a. Yes (27)
- b. No (27)

Possible Schedule 2: Fire retardant manufacturing, bulk storage or shipping

Warehouse facility with a single mobile welding cart used to repair equipment as needed.

a. Yes (14) b. No (48)

Possible Schedule 2: C6 – welding or machine shops (repair or fabrication)

Food industrial facility with workshop and tool area used to repair conveyors, presses and other on-site equipment where needed.

- a. Yes (35)
- b. No (15)

Possible Schedule 2s:

- C6 welding or machine shops (repair or fabrication) Answer: Possible if welding is taking place
- E1 appliance, equipment or engine repair, reconditioning, cleaning or salvage

Large ink storage tanks at an industrial size printing operation.

a. Yes (61) b. No (0)

Possible Schedule 2: A6 – ink or dye manufacturing or bulk storage

A pile of road salt storage on a non-industrial property, where the road salt is for local use.

- a. Yes (39)
- b. No (20)

Possible Schedule 2: E7 – road salt or brine storage

A small innocent looking marina, where no fueling is provided, boats are relatively small, and no repairs are possible.

- a. Yes (27)
- b. No (32)

Possible Schedule 2: G3 – dry docks, marinas, shipbuilding or boat repair and maintenance, including paint removal from hulls

A shipping facility with two trucks that does basic vehicle maintenance work (change tires or oil).

- a. Yes (38)
- b. No (19)

Possible Schedule 2: G2 – automotive, truck, bus, subway or other motor vehicle maintenance, repair, salvage or wrecking

A recycling depot accepts electronic waste including computer accessories, small household appliances (like toaster ovens) and dry cell type batteries (AAA, AA, C, D, etc). The waste is stored in series of bulk containers until a sufficient quantity is gathered and then the containers are picked up and taken to a location for processing. (Select all that apply)

- a. No Is this activity E1 appliance, equipment, or engine maintenance, repair, reconditioning cleaning or salvage (5)
- b. Maybe depending on quantity Is this activity B1 battery manufacturing, recycling or bulk storage (5)
- c. Maybe depends on sufficient quantity Is this activity B3 Electrical equipment manufacturing, refurbishing or bulk storage (7)
- d. Is this activity H8: electrical equipment recycling? are they actually recycling something?(5)
- e. Yes Is this activity H13: municipal waste storage, recycling, composting or landfilling? (6)

Is a compounding pharmacy which prepares medications on site from base ingredients.

- a. Yes (20)
- b. No (32)

Possible Schedule 2: A9 – Pharmaceutical products, or controlled substances as defined in the Controlled Drugs and Substances Act (Canada), manufacturing or operations.

A dry cleaner that uses only biodegradable products.

a. Yes (44)b. No (8)

Possible Schedule 2: E9

Are the following marinas Schedule 2 activities. (Select all that apply)

- a. Marina consisting of a dock with room for 10 boats. No fueling, repair or power facilities. (43)
- b. Marina consisting of a dock with room for 50 boats. No fueling, repair or power facilities. (42)
- Marina consisting of a dock with room for 10 boats.
 One fuel dispenser, with AST on shore. No repair or power facilities. (49)

Using pulverized concrete as fill.

- a. Yes (40)
- b. No (9)

Possible Schedule 2: H5 – landfilling of construction demolition material, including without limitation asphalt and concrete?

Please join us for happy hour at Hyatt's Mosaic Grille on this level

THANK YOU!