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Statistics for Contaminated Sites

The series of documents listed here provides
information and guidance on various aspects
of the application of statistics to contaminated
sites studies. These publications have been
developed by FSS International for the
ministry.

Summary of current FSS documents
There are currently 16 guidance documents in
this series.

12-1, “Univariate Description” discusses
statistical concepts and presents tools for
describing the statistical characteristics of a
single variable.

12-2, “Bivariate Description” addresses the
statistical analysis of pairs of variables and
presents tools for describing the relationship
between variables.

12-3, “Spatial Description” presents various
tools for describing and analyzing data in their
spatial context.

12-4, “Distribution Models” presents basic
information on some of the statistical
distribution models that are commonly used in
contaminated site studies.

12-5, “Non-Parametric Statistics” discusses
statistical procedures that do not depend on
distribution models.

12-6, “Choosing a Distribution” presents
advice on how to decide which distribution
model is most appropriate.

12-7, “Identifying Populations” presents tools
that can be used to help with the decision of
whether to treat the data as one population or

‘to split them into two or more subpopulations.

12-8, “Outliers” discusses the evaluation and
treatment of unexpected and erratic high
values.

12-9, “Estimating a Global Mean” addresses
the estimation of an average value over a large
area and the quantification of the uncertainty
on such estimates.

12-10, “Composite Samples” presents advice
on the interpretation of analytical values from
composite samples that have been created from
two or more discrete samples.

12-11, “Statistical QA /QC” discusses issues
related to the monitoring, documentation, and
control of the reliability and repeatability of
sample information.

12-12, “Sampling Plans” addresses the design
of appropriate sampling plans for various
purposes throughout the life a contaminated
site project.




12-13, “Classification” provides information
on how to classify contaminated material into
an appropriate regulatory category.

12-14, “Stockpiling” discusses the appropriate
sampling and classification of stockpiled
material.

12-15, “Reporting” provides general advice on
the content of a report of a statistical study for
a contaminated site.

12-16, “Randomization” presents procedures
for randomly selecting samples from larger
batches and for randomly selecting sample
locations.

Alternatives to this technical guidance

All of these FSS statistical guidance documents
have the following brief explanatory note in
the header on their front page:

“This guidance document is one of a series that
outlines important basic statistical concepts and
procedures that are useful in contaminated site
studies. BC Environment [the BC Ministry of
Environment] recommends that these suggestions be
followed where applicable, but is open to other
techniques provided that these alternative are
technically sound. Before a different methodology is
adopted it should be discussed with BC
Environment.”

This makes it clear that the ministry views the
information in these guidance documents as an
appropriate starting point for statistical studies
of contaminated sites. It recognizes that
prescribing a rigid procedure is not
appropriate for all contaminated sites, and it is
willing to consider site-specific alternatives
that are technically defensible. We recommend,
however, that such alternatives be discussed
with the ministry so that consensus can be
reached on the appropriateness of different
approaches.

Also important to note is that these 16
documents were written before the
Contaminated Sites Regulation came into
effect. Therefore terms such as “industrial
waste,” “residential waste,” and “total PAH”
still appear in some of the documents even
though they are not used in the new
Regulation.

For more information, contact the Environmental
Management Branch at site@gov.bc.ca .



THE GENERAL IDEA

The application of statistics to contaminated site studies re-
quires a clear and coherent understanding of the available data.
For those directly involved in statistical analysis and interpre-
tation, a clear and coherent understanding of the data will help
them to select appropriate statistical tools and to make criti-
cal assumptions about statistical populations. For those who
prepare statistical reports, it is important that their reports
convey a clear and coherent understanding of the data to their
audience; the readers of a report will not be able to form an
opinion about the validity of the study's conclusions without a
good understanding of the data on which it is based.

This guidance document discusses tools for exploratory data
analysis, a statistical study’s first step in which we investigate
the available data, form tentative opinions and modify these
opinions as our understanding of the data improves and evolves.
The same tools that help us explore and interpret the available
data are also ideal for presenting and summarizing our under-
standing of the data to those not directly involved in the study.
This guidance document should therefore be of assistance not
only to those who actually do the statistical analysis and in-
terpretation, but also to those who are responsible for writing
reports. This document is not intended to provide a rigid pre-
scription for how to perform and present an exploratory data
analysis; indeed, as noted in the final section of this document,
sitch a rigid prescription would not permit us to exercise the cu-
riosity that is one of the cornerstones of thorough exploratory
data analysis. This document does intend, however, to encour-
age some much needed consistency in the performance and
presentation of statistical studies by providing a simple and
straightforward approach to exploratory data analysis.

This guidance document focuses on the exploratory data anal-
ysis of a single variable, such as the concentration of a single
contaminant. Two other documents in this series focus on
other aspects of exploratory data analysis. BIVARIATE DESCRIP-
TION focuses on tools for analyzing the relationship between
pairs of variables; SPATIAL DESCRIPTION focuses on tools for
analyzing the data in their spatial context.

PROVIDING. DETAIL & CONVEYING INFORMATION

With all statistical presentations there is a tradedf between
the level of detail in the presentation and the amount of in-
formation that it conveys. Table 1 and Figure 1 demonstrate
this tradeoff using data from a site contaminated with mercury.
Table 1 provides the most detailed and complete information
about the available data values and yet it does not immediately
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convey much information. By sacrificing some of the detail, the
histogram shown in Figure 1 more immediately conveys useful
information about the available data by giving us a quick ap-
preciation of the fact that there are many low values around
1 ug/g and only a few erratic high ones above 10 ug/g. Though
this fact can also be extracted from Table 1, the histogram
makes it more readily apparent.

Table 1 Hg measurements (inug/g) from a contaminated site.

1.08 110 7.27 030 501 187 158 067 006 0.22
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1.25 1587 231 070 11.31 464 069 0.06 045 359
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Figure 1 A histogram of the mercury data in Table 1.

As we compile a statistical description, we should keep this
tradeoff in mind and should select graphical and numerical
summaries that convey useful and salient information about
the data. The various components of our statistical description
will often be somewhat redundant; some of the statistics in Fig-
ure 1, for example, convey similar information as others. Such
redundancy is not a flaw, however, as long as each component
successfully conveys useful additional information. The guiding
principle should be clarity of understanding — a good statisti-
cal presentation is one that enables others who are unfamiliar
with the site to share our understanding of the data.

SUMMARY STATISTICS

Measures of center

The statistic most commonly used to summarize where the
center of a distribution lies is the mean, which is simply the
arithmetic average of the data values:
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Though the mean is the traditional measure of the center of
a distribution, it is strongly influenced by erratic high values
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and may not correspond to our intuitive sense of the middle of ~ Like the mean, and all other statistics that involve an averag-
the distribution. For the mercury data shown n Figure 1, for  ing of the data, the variance and standard deviation are both
example, more than two-thirds of the values are smaller than  sensitive to extreme values. Had the largest value in Table 1
the mean value of 3.74 ug/g, so it is not clear why this qualifies ~ been an order of magnitude higher, at 158.7 ug/g rather than
as a “central” value. For contaminated site data, which often 15.87 ug/g, the variance would soar from less than 20 to nearly
span several orders of magnitude, it is common to find that - 500 ug/g?! With a single extrem e value having such a profound
the vast majority of the data values fall below the mean. Had  influence, the variance and standard deviation e often difficult
the largest value in Table 1 been an order of magnitude higher,  to interpret. For most contaminated site data, the interquar-
at 158.7 ug/g rather than 15.87 ug/g, the mean would nearly tile range (IQR) is a more stable and interpretable alternative.
double to 6.60 ug/g higher than 75% of the data. The I1QR is the difference between the upper quartile and lower
quartile and provides a direct measurement of the spread of the
middle 50% of the data values. Since it depends only on the
quartiles, the IQR is insensitive to the exact values of the most
extreme data.

For data that span several orders of magnitude, the median is
less sensitive to extreme values and provides a stable statis-
tic that corresponds more closely to our intuitive sense of the
center of the distribution. The median is the number that ap-
pears halfway down the list of values when they are sorted from [ Several of the guidance documents in this series warn that cer-
smallest to largest; for an even number of data, the median is | tain procedures should not be used if the data are not from
tmmiddle two values. Since it depends only on a homogeneous population. Though it is difficult to give ex-
the ordering of the data, the median would not be changed if | act specifications for “homogeneity”, an appropriate starting
the largest value was an order of magnitude higher. point is the measure of spread called the coefficient of varia-

Taken together, the mean and the median provide an indication tion, which is the ratio of the standard deviation to the mean:

of the influence of extreme values in a data set. If the two v = s.—:— m. This measure of relatn{e variation is often ex-
measures of the center are close to each other, then extreme pressed in percent, rather than as a ratio. For data whose CV is

values do not play much of a role. This is not typically the 1 (or 100%), their standard deviation is as big as their mean. If

case with contaminated site data. It is not unusual to find that | thedata are to beWshould
there are some influential extreme values that cause the mean be smaller than 1. By itself, this is not a guaranieethat the
of the data to be more than twice the median. data do come from a common population; qualitative informa-
tion, such as the site history and the provenance of the data,
also needs to be taken into account. If the CV is larger than 1,
however, it is unlikely that the samples are from a single pop-
The statistics that are used to describe the location of other  jation: the large spread in the data values is likely a warning
parts of the distribution can all be calculated easily fom a  hat different samples have been affected by different physical
sorted list of the data values. The minimum is the first value  an4 chemical processes.
on the sorted list and the maximum is the last value on the
sorted list. The “quartiles” provide two other useful measures Measures of shape
of location. In the same way that the median splits the data
set into halves, the quartiles split it into quarters. 256% of the
data values are below the lower {or first) quartile and 25% of
them are above the upper (or third) quartile.

. Measure s of location

The final summary statistic that is often included in a statistical
description is a measure of the shape or symmetry of the dis-
tribution. The symmetry of a distribution can be described by
comparing the mean to the median, and can also be captured
in a statistic called the skewness. Though the skewness does
have a specific formula, we rarely need to know its precise value
and usually report only its sign, either positive or negative.

In most contaminated site studies, the lowest values are be-
low the detection limit. Rather than reporting these values as
exactly half the detection limit, as is often done, it is more use-
ful in a statistical summary to state the detection limit and to

report how many values fall below it. Positively skewed distributions have a lot of low values and

a decreasing proportion of high values; the histogram of posi-
tively skewed data is asymmetric with a tail to the right, fike the

- o : o one shown in Figure 1. Negatively skewed distributions, which
in addition to describing where the center of the distribution 46 rare in contaminated site studies, have a lot of high val-
lies, a complete statistical description should also report how s and a decreasing propartion of low values; their histogram
t.he data values are spread around the center — are they all  p5q 5 tail to the left. Occasionally we encounter contaminated
tightly grouped close to the center or are they scattered far  gjte data whose skewness is very minor and whose histogram
away from the center? The statistics that are commonly used to appears symmetric. The guidance document CHOOSING A DIS-

describe the spread of the distribution are the variance, £, and TRIBUTION offers a rule of thumb that can be used to decide if
the standard deviation, s. The sample variance is the average  the distribution can be deemed symmetric. :

squared difference of the data values from their mean:

Measures of spread

GRAPHICAL TOOLS

By themselves, summary statistics do not always convey all of
the important information about a data set. Graphical presen-
The standard deviation is the square root of the variance. tations of the data provide valuable visual support to readers.

: 2 1¢
Variance = s = - Z(v; —m)?
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who are trying to follow the details of a statistical study. A
combination of graphical displays and numerical summaries is
the most effective vehicle for conveying our understanding of
the data to readers who are not familiar with the project.

Histograms

The most common graphical presentation of data is a histogram
that shows how many samples fall in different categories. Using
the mercury data presented on Table 1 on the previous page,
Table 2 records how many samples fall within each of sixteen
classes, from 0-1ug/g to 15-16 ug/g. Figure 1 presents this
information as a histogram on which the height of a bar is equal
to the percentage of samples in that class.

Table 2 Frequency table of mercury data in Table 1.

Class No. of % of Class No. of % of
(inug/g) samples total (in ug/g) samples total
0-1 21 42 8-9 3 6
1-2 8 16 9-10 2 4
2-3 2 4 10-11 0 0.
34 2 4 11-12 2 4
45 2 4 12-13 1 2
5-6 2 4 13-14 0 0
6-7 0 0 14-15 1 2
7-8 3 6 15-16 1 2

It is often awkward to select a class width for histograms of
contaminated site data since the data span several orders of
magnitude. If a large class width is used in an attempt to
display the entire range of the data values, then the first class
on the histogram often gets the lion's share of the samples and
the display does not provide much detail on the distribution of
the lower values. If a small class width is used in an attempt to
show more of the detail of the distribution of the lower values,
then the number of classes needed to span the entire range
becomes unmanageable. One solution to this common problem
is to show two histograms, one that spans the entire range with
wide classes and another that shows the details of the lov end
of the distribution with smaller classes.
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Figure 2 A logarithmic histogram of the data in Table 1.

Another way of dealing with data that span several orders of
magnitude is to choose classes that have equal widths on a
logarithmic scale. Figure 2 shows the mercury data from Ta-
ble 1 plotted as a histogram on a logarithmic scale. One of the
advantages of a logarithmic histogram is that it often makes
different populations more apparent. On Figure 2, for exam-
ple, the low background mercury values form one clear bump
or “mode" around 1 ug/g, while the high contaminated values
show another mode around 10 ug/g.

Cumulative plots and probablity plots

Using the mercury data presented on Table 1 on the previous
page, Table 3 records the number and percentage of samples
that fall below the sixteen thresholds from 1 to 16 ug/g; in
the cumulative plot shown in Figure 3, the threshold values
in the first column of Table 3 are used as the x-coordinates
and the cumulative percentages in the last column are used
as the y-coordinates. The cumulative plot in Figure 3 has a
logarithmic x-axis to accommodate the skewness in the data; if
the distribution had been more symmetric, a linear x-axis would
have been more appropriate.

Table 3 Cumulative frequency table of mercury data in Table 1.

No. of No. of

Threshold  samples % of Threshold samples % of

(in ug/g) below total (inug/g) below total
1 21 42 9 43 86
2 29 58 10 45 90
3 31 62 11 45 90
4 33 66 12 47 94
5 35 70 13 48 96
6 37 74 14 48 96
7 37 74 15 49 98
8 40 80 16 50 100
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Figure 3 A cumulative plot of the mercury data in Table 1.
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Figure 4 A probability plot of the mercury data in Table 1.

When cumulative plots are presented on special graph paper
called "probability paper” they are usually called “probability
plots”. Figure 4 presents the data from Table 3 as a probability
plot. The probability axis on this kind of plot is squashed in
the middle and stretched at the top and bottom. The reason
for plotting cumulative curves on this distorted grid is that
it simplifies the checking of whether the distribution of the
data values is close to that of a mathematical model called the

" “normal” or “gaussian” distribution. The histogram of normally

distributed-data will be shaped like a bell. Rather than checking
how bell-like the histogram is, it is easier to check how straight
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the probability plot is. The distorted grid of probability paper
is designed in such a way that the cumulative curve of normally
distributed data will plot as a straight line.

Boxplots

Figure 5 shows another graphical tool that is becoming popu-
far in exploratory data analysis. The box goes from the lower
quartile to the upper quartile and therefore spans the middle
50% of the data values. The bar in the middle of the box shows
the median and the dot shows the mean. The arms that stick
out of the box go to the minimum and maximum. As with
other graphical presentations, logarithmic scaling often makes
the boxplot more informative if the distribution of data values
is skewed. The simple boxplot captures most of the critical in-
formation about a distribution — its cente r, its spread and its
skewness — in a f ormat tha is more compact than a histogram.
Hg (in ug/g}
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Figure 5 A boxplot of the mercury data in Table 1.

DATA BASE COMPILATION AND VERIFICATION

An exploratory data analysis is only as good as the data on
which it is based; when there are errors in the data base, our
exploratory data analysis is often useless and misleading. With
the data from contaminated site studies often having to be tran-
scribed, keypunched or electronically merged from some other
source, there are ample opportunities for human errar. Before
attempting an exploratory data analysis, we need to know how
the data base was created. If the data base is not accompanied
by a clear audit trail that explains all of the steps involved in
its creation, then it should be verified against original records
wherever possible.

One of the best ways to verify a data base is by using teams of
two people to proofread the data. One person reads out loud

- the data values from a hardcopy of the data base while the other
checks each value against original records, such as laboratory
reports or surveyor's notes. Though two person proofing is a
tedious exercise, it is a very important one if the integrity of the
data base is uncertain. Experience has shown that it provides
"a much more complete and exhaustive verification of a data
base than automated or computer-based techniques, which can
do no more than check one electronic version of the data base
against another, If the original data were not recorded electren-
ically, but were recorded manually and later transcribed, then
verifying one electronic version against another cannot catch
mistakes that crept into the data before or during the creation
of the first electronic version. '

Once the integrity of the data base is well documented, every
effort should be made to maintain this integrity. In many con-
taminated site studies, where there are several phases of data
collection, the integrity of the early data base is lost as vari-
ous people merge new data and modify old data to suit their
individual purposes. Concentrations may need to be converted
from one unit of measurement to another, or the coordinate

system used by one group may need to be transformed to the -

coordinate system used by another group. With every such
modification of the data there are opportunities for error. Such
opportunities increase with every new person who has access
to the data base and is able to make modifications. Once the
integrity of a data base is lost, restoring it will either require
considerable effort or will be completely impossible.

On large projects, where there are more than 100 samples or
where several groups have been collecting data, one person
should have the responsibility for maintaining the authoritative
and verified data base. Others may obtain copies for their own
work but none of their individual changes should be accepted in
the single authoritative version until the data base coordinator
approves the change and prepares documentation that explains
exactly what changes were made and why.

RECOMMENDED PRA CTICE

It is not possible to give a rigid prescription for exploratory
data analysis since a thorough understanding of the data re-
quires both creativity and curiosity. The sequence of steps that
worked on one project will not always work on another one.
The following general guidelines, however, should improve any
exploratory data analysis for contaminated site studies:

1. Before exploratory data analysis, the integrity of the data
should be documented, either by reference to a report on
procedures used to compile and verify the data or by a
complete check of all data against original records.

2. Complete listings of all data used in statistical studies
should be included as appendices to reports; these do
not, however, constitute an appropriate statisticad sum-
mary. Statistical summaries of univariate data should in-
clude: ‘

(a) Graphical presentations of the data, such as his-
tograms, probability plots or boxplots. If the data
are skewed, then logarithmic scaling will often make
such graphical presentations more informative.

(b) Summary statistics that describe the center, location,
spread and shape of the distribution of data values.
If the data are skewed, then the mean and standard
deviation should not be used alone to summarize the
data but should be accompanied by other measures,
such as the median and interquartile range, that are
not so sensitive to extreme values.

REFERENCES AND FURTHER READING

In addition to the other guidance documents in this series, the
following references provide useful supplementary material.

Davis, J.C., Statistics and Data Analysis in Geology, 2nd edi-
tion, John Wiley & Sons, New York, 1986.

Understanding Robust and Exploratory Data Analysis,
(Hoaglin, D.C., Mosteller, F., and Tukey, JW., eds.), John
Wiley & Sons, New York, 1983.

Isaaks, E.H. and Srivastava, R.M., An Introduction to Applied
Geostatistics, Oxford University Press, New York, 1989.
Moore, DS., Stati.stics: Concepts and Controversies, W.H.

Freeman and Company, New York, 1985.



THE GENERAL IDEA

The application of statistics to contaminated site studies re-
quires a clear and coherent understanding of the available data.
For those directly involved in statistical analysis and interpre-
tation, a clear and coherent understanding of the data will help
them to select appropriate statistical tools and to make criti-
cal assumptions about statistical populations. For those who
prepare statistical reports, it is important that their reports
convey a clear and coherent understanding of the data to their
audience; the readers of a report will not be able to form an
opinion about the validity of the study's conclusions without a
good understanding of the data on which it is based.

This guidance document discusses tools for exploratory data
analysis, a statistical study’s first step in which weé investigate
the available data, form tentative opinions and modify these
opinions as our understanding of the data improves and evolves.
The same tools that help us explore and interpret the available
data are also ideal for presenting and summarizing our under-
standing of the data to those not directly involved in the study.
This guidance document should therefore be of assistance not
only to those who actually do the statistical analysis and in-
terpretation, but also to those who are responsible for writing
reports. This document is not intended to provide a rigid pre-
scription for how to perform and present an exploratory data
analysis; indeed, as noted in the final section of this document,
such a rigid prescription would not permit us to exercise the cu-
riosity that is one of the cornerstones of thorough exploratory
data analysis. This document does intend, however, to encour-
age some much needed consistency in the performance and
presentation of statistical studies by providing a simple and
straightforward approach to exploratory data analysis.

This guidance document focuses on the exploratory data anal-
ysis of the relationship between pairs of variables. Two other
documents in this series focus on other aspects of exploratory
data analysis. UNIVARIATE DESCRIPTION focuses on tools for
analyzing a single variable; it also addresses the important first
step of verifying the data base. SPATIAL DESCRIPTION focuses
on tools for analyzing the data in their spatial context.

PROVIDING DETAIL & CONVEYING INFORMA TION

With all statistical p resentations there is a tradeoff betveen the
level of detail in the presentation and the amount of information
that it conveys. Table 1 and Figure 1 demonstrate this trade-
off using data from a site contaminated with PCBs. Table 1
provides the most detailed and complete information about the
available data values and yet it does not immediately convey
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much information. The scatterplot shown in Figure 1 does
not show us the precise values of all the data, and is therefore
slightly less detailed than the complete listing. By sacrificing
some of the detail, however, the scatterplot more immediately
conveys useful information about the available data by giving
us a quick appreciation of the fact that there is a strong rela-
tionship between clay content and PCB concentration — high
PCB values tend to be associated with soil that has a high clay |
content. Though this fact could also have been extracted from
Table 1, the scatterplot makes it more readily apparent.

Table 1 Measurements of clay content (in %) and PCB concen-
tration (in ug/g) from a contaminated site.

Clay PCB Clay PCB Clay PCB
80 0.9 90 76 14 1.1
90 9.4 010 121.8 41 6.2

100 59.7 90 4.5 52 9.3
80 3.7 90 35.4 49 11.2
90 11.8 100 95.6 54 : 3.2
90 16.2 100 27.2 - b8 19.1
80 0.6 80 2.1 21 5.6
80 . 5.4 - 80 0.8 93 184.0
80 1.3 90 105.6 39 3.5
80 . 3.2, 80 0.8 67 49.5
80 . 15 90 54.5 54 8.5
90 86.8 100 53.3 55 11.2
80 1.5 100 32.8 31 3.0
80 3.4 90 (124 94 124.2
80 13 100 59.5 74 44.9

© 90 26.3 100 105.5 32 3.8
90 8.8 90 28.0
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Figure 1 A scatterplot of the clay — PCB data in Table 1.

As we compile a bivariate statistical description, we should keep
this tradeoff in mind and should select graphical and numeri-
cal summaries that convey useful and salient information about
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the relationship between the two variables. The various com-
ponents of our statistical description will often be somewhat
redundant: the two statistics given in Figure 1, for example,
convey similar information. Such redundancy is not a flaw,
however, as long as each component successfully conveys useful
additional information. The guiding principle should be clarity
of understanding — a good statistical p resentation is one that
enables others who are unfamiliar with the site to share our
understanding of the data.

SUMMA RY STATISTICS
Linear correlation coefficient

The correlation coefficient that is commonly used to summarize
the relationship between two variables is calculated as follows:

Sx * Sy

Linear correlation = r =

The term in the brackets is the average of the products between
each pair of data values; using the example from Figure 1, the
x;'s would be the clay content values and the y;'s would be the
PCB concentrations. my is the mean of the x values and s, is
" their standard deviation; my is the mean of the y values and sy
is their standard deviation.

The correlation coefficient is always between —1 and +1. When
the two variables are perfectly linearly related and increase to-
gether, then their correlation coefficient will be +1. If the two
variables are perfectly linearly related but one increases when

the other one decreases, then the correlation coefficient will be

~1. Figure 2 shows examples of scatterplots with correlation
coefficients ranging from -0.8 to +0.8.
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Figure 2 Examples of different correlation coefficients.

A correlation coefficient close to +1 or =1 usually indicates a
strong relationship between two variables. It should be noted,
however, that a strong correlation does not necessarily imply a
causal relationship between the two variables.

Shortcomings of the linear correlation coefficient

Though the linear correlation coefficient is the most common
summary of the relationship between two variables, it has some
practical shortcomings for contaminated site studies. Like other
statistics that involve an averaging of the data values, such

as the mean and variance, the li correlation coefficient is

strongly influenced by extreme values.

An example of this sensitivity to extreme values can be seen
in Figure 1. Though there is some visible relationship between
the two variables — high PCB values tend to be associated

with high clay content — the linear correlation coefficient is
only 0.25, a value so low that we might mistakenly believe the
two variables to be unrelated. The cause of this low correlation
is a single aberrant sample that has a low clay content but a
high PCB concentration. A quick check of the original data in
Table 1 strongly suggests that the clay content for this sample
is erroneous, and should have been recorded as 100 rather than
010. 'If we remove this questionable sample from the data set,
and calculate the correlation coefficient on the remaining 49
samples, we find that the correlation coefficient rises to 0.43.

Extreme values do not always cause

the correlation coefficient to dete-
riorate; they can also enhance the

low correlation of a weak relation-

ship. The linear correlation co-

efficient essentially measures how
close the paired values come to <,
plotting on a straight line. As
shown in Figure 3, a single very ex-
treme sample can cause the linear Figure 3 Example of aber-
correlation coefficient to be high rant sample enhancing an
not because there is a strong rela- otherwise poor correlation.

tionship between the variables but rather because a straight line
can be fit through the aberrant sample and the cloud formed
by the rest of the data.

r=07

-

Rank correlation

The rank correlation is an alternative to the traditional linear
correlation that is not so sensitive to extreme or aberrant val-
ues; it is calculated by assigning ranks to the data and then
calculating the traditional linear correlation on these ranks.

Table 2 Data from Table 1 along with their ranks.

Clay PCB Clay PCB
% fRank -ug/g/Rank % /Rank ug/g/Rank
80 28 09 4 90 38 1056 47
90 32 94 26 80 27 08 3
100 49 59.7 43 90 36 545 41
80 25 37 16 100 45 533 40
90 40 11.8 29 100 50 328 36
9 30 16.2 31 90 33 124 30
80 24 06 1 100 46 59.5 42
80 21 54 19 100 47 1055 46
80 18 13 6 90 29 280 35
80 17 32 12 14 2 11 5
80 22 15 8 a7 6.2 21
90 41 86.8 44 52 9 9.3 25
80 23 15 9 9 8 112 27
80 20 34 14 54 10 32 13
80 19 1.3 7 58 13 191 32
90 31 26.3 33 21 3 56 20
90 39 88 24 93 42 1840 50
9 37 76 22 39 6 35 15
010 1 1218 48 67 14 49.5 39
90 35 45 18 54 11 85 23
90 34 354 37 55 12 112 28
100 48 95.6 45 31 4 30 11
100 44 27.2 34 94 43 1242 49
80 16 21 .10 74 15 449 38
80 26 08 2 32 5 38 17
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Table 2 gives the ranks for the data shown earlier in Table 1.
The ranks, which are values from 1 to the number of samples,
identify where the original data values would appear on a sorted
list. For example, the smallest PCB value in Table 1 is 0.6 ug/g;
this PCB value gets a rank of 1. The largest PCB value is
184.0 ug/g; this PCB value gets a rank of 50. The ranking of
the clay content measurements is a little bit tricky since there
are many values that are identical; for example, there are seven
samples whose clay content is reported as 100%. One common
way of breaking these ties is simply to assign the ranks randomly
within each group of tied values. In Table 2, the highest seven
ranks, from 44 through 50, are assigned randomly to the highest
seven clay content values, '

To calculate the rank correlation coefficient for the clay — PCB
data we use the equation shown earlier for the correlation coef-
ficient, but rather than plugging in the actual data values, we
use their ranks instead. The x;’s would be the ranks of the clay
content, my would be the mean of these ranks and s, would
be their standard deviation; the y;’s would be the ranks of the
PCB measurements, my would be the mean of these ranks and
sy would be their standard deviation.

As can be seen from the statistics reported along with the scat-
terplot in Figure 1, the rank correlation coefficient for the clay
- PCB data is noticeably higher than the linear correlation. This
is due to the fact that the rank correlation is not as sensitive to
the aberrant (and probably erroneous) data value. Earlier, when
we removed this single aberrant value, the linear correlation co-
efficient climbed from 0.25 to 0.43. The removal of this same
dubious sample causes the rank correlation to change from 0.51
to 0.60; while the rank correlation is definitely affected by the
aberrant sample, it is not as sensitive to this aberrant sample
as is the traditional linear correlation.

| The rank correlation coefficient will not always be higher than
the linear correlation cofficient. With the exam ple shown in
Figure 3, where a single aberrant sample was enhancing an oth-
erwise poor correlation, the rank correlation coefficient would
be virtually 0, much lower value than the linear correlation co-
efficient of 0.7.

The main advantage of the rank correlation coefficient is that
it provides a useful supplement to the traditional linear corre-
lation coefficient. In the same way that the difference between
the mean and the median can provide insight into the skewness
of a distribution, the difference between the rank and linea cor-
relation coefficients can provide insight into the nature of the
relationship between two variables. If the rank correlation is
lower than the linear correlation, then the relationship between
the two variables might not be as good as the linear correlation
suggests since aberrant samples could be enhancing an other-
wise poor correlation. If the rank correlation is higher than the
linear correlation, then the relationship between the two vari-
ables might not be as bad as the linear correlation suggests
since aberrant samples could be ruining an otherwise good cor-
relation. If the rank and linear correlation coefficients are about
~ the same, as they would be for the three examples shown in Fig-
*ure 2, then aberrant samples likely have little effect and either
statistic provides an appropriate summary of the strength of
the relationship.

GRAPHICAL TOOLS

By themselves, rank and linear correlation may not convey all of
the important information about the relationship between two
variables. Graphical displays provide valuable visual support to
those who are trying to follow the details of a statistical study.
A combination of graphical displays and numerical sunmaries
is the most effective vehicle for conveying our understanding of
the data to those who are not familiar with the project.

Scatterplots

The common graphical display for paired data is a scatterplot
or x-y plot like the one shown in Figure 1. The values of one -
variable serve as the x coordinates for the plot and the values
of the other variable serve as the y coordinates. In the example
shown in Figure 1, each sample listed in Table 1 is shown as a
dot, with the clay content serving as the x coordinate and the
PCB concentration serving as the y coordinate.

In addition to their value as graphical summaries, scatterplots
are often very useful for detecting errors in the data base. With
the data in Table 1, for example, the sample with a clay con-
tent of 10% might not attract much attention during univariate
analysis; even though it is the smallest clay content in the data
base, there are some other low values in the 10-20% range,
so this particular sample would not stand out on a histogram
or cause any of our univariate statistical summaries to attract
attention. When we plot the clay content against the PCB
measurements on a scatterplot, however, this particular sam-
ple does provoke our curiosity because it does not follow the
general trend of the rest of the sample data.

When a scatterplot reveals aberrant samples, these should not
be discarded without a complete examination of the reasons for
these aberrations. The guidance document entitled OUTLIERS
provides advice on recognizing, .interpreting and dealing with
aberrant samples.

With skew ed data that span several orders of magnitude, a con-
ventional scatterplot may not be very revealing or informative
since much of the data will be squashed along the axes. In
Figure 1, for example, even though we can see that there is a
tendency for high PCB values to be associated with high clay
content, we don't really get a good look at what is happen-
ing with the half of the data for which the PCB value is below
10 ug/g. In such situations, logarithmic scaling of one or both
of the axes may bring useful additional insight into the data. -
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Figure 4 A scatterplot of the clay — PCB data in Table 1 with the
y-axis logarithmically scaled.
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Figure 4 shows a scatterplot of the clay — PCB data from Table 1
. with the y-axis logarithmically scaled. The reason that we have
not also used logarithmic scaling on the x-axis is that the clay
content measurements are not skewed nor do they span more
than one order of magnitude. Logarithmic scaling was used on
the y-axis because the PCB values are positively skewed and go
from less than 1 ug/g to more than 100 ug/g.

With the log arithmic scaling, the scatterplot better reveals one
of the unusual characteristics of this particular data set. There
appears to be two groups of data, both of which show a ten-
dency for PCB content to increase with clay content. One of
the groups spans a broad range of clay content, from about
15% to 95% while the other one spans a much narrower range,
from 80% to 100%, and only includes exact multiples o 10.
For this particular data set, the reason for this odd relationship
“is that the data were collected by two different groups; one
group made visual estimates of clay ‘content while the other
one made direct measurements of clay content as part of their
laboratory procedure. The group that made visual estimates
used only exact multiples of 10 and tended to overestimate the
clay content.

RECOMMENDED PRACTICE

With sites that have several different contaminants, the number
of pairings of all the different variables may be very large; with
20 contaminants, for example, there are nearly 200 different
pairings of the different variables. It is not necessary to explore
the relationship and provide a complete bivariate description
for all possible pairs. The analysis of the relationship between
variables should focus on those relationships that are deemed to
be important for the study. Using the earlier example of the clay
- PCB data, the fact that the PCBs are concentrated in layers
with a high clay content may lead to a remediation strategy that
treats only the clay layers; in such a situation, documentation
of the relationship between clay content and PCB concentration
is critical. Other common situations in which the relationship
between variables should be documented include the following:

e One contaminant is often selected as'the principal contam-
inant from a group of several known contaminants with an
assumption that the remediation of this principal contam-
inant will also entail the remediation of all the minor con-
taminants. With heavy metals contamination problems,
for example, lead is often identified as the primary con-
taminant and becomes the focus of the study even though
other metals may also occur in sufficient quantities to re-
quire remediation. In such situations, scatterplots of lead
versus each of the other possible contaminants will pro-
vide good documentation of whether the remediation of
lead will also address the concerns about minor contami-
nants.

e Some remediation strategies target only a portion of the
soil on the contaminated site. Soil washing, for example,
may be used to remediate the medium and fine grain sizes
if the coarser material is thought to be uncontaminated.
In such situations, a scatterplot of contaminant concen-
tration versus grain size will provide good documentation
of the appropriateness of such a remediation strategy. .

In general, for any study in which information about one vari-
able is being used as the basis for making assumptions about
the behaviour of another variable, then bivariate exploratory
data analysis should be performed and summarized in the study
report, :

It is not possible to give a rigid prescription for exploratory
data analysis since a thorough understanding of the data re-

-quires both creativity and curiosity. The sequence of steps that

worked on one project will not always work on another one.
The following general guidelines, however, should improve the
exploratory data analysis of the relationship between variables
for any contaminated site study:

1. Before exploring the relationship between pairs of vari-
ables, the integrity of the data should be documented,
either by reference to a report on procedures used to com-
pile and verify the data or by a complete check of all data
against original records; see the guidance document en-
titled UNIVARIATE DESCRIPTION for further advice on the
issue of data base compilation and verification.

2. Complete listings of all data used in statistical studies
should be included as appendices to reports; these do
not, however, constitute an appropriate statisticad sum-
mary. Statistical summaries of bivariate data should in-
clude:

(a) Scatterplots that display the relationship between
pairs of variables; if the data are skewed, then log-

arithmically scaled scatterplots should also be in-
cluded.

(b) Linear and rank correlation coefficients that summa-
rize the strength of the relationship.
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Wiley & Sons, New York, 1983.

Isaaks, E.H. and Srivastava, R.M., An Introduction to Applied
Geostatistics, Oxford University Press, New York, 1989.

Moore, DS., Statistics: Concepts and antroversies, W.H.
Freeman and Company, New York, 1985.
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The application of statistics to contaminated site studies re-
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pare statistical reports, it is important that their reports convey
a clear and coherent understanding of the data: the readers of
a report will not be able to form an opinion about the validity 10000 o=
of the study's conclusions without a good understanding of the
data on which it is based.

Figure 1 A histogram of 180 lead samples.
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also to those who are responsible for writing reports. This doc- Figure 2 A scatterplot of lead versus distance from the smelter.
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information, such as surficial geology or the history and usage of
the site, that can be integrated with a statistical understanding
only through visual displays such as maps and cross-sections. Figure 3 A greyscale map of the 180 lead samples.

b, 1500W  10Q0W _500W Q500  1000E _ 15Q0E A




2

Figures 1 and 2 summarize 180 lead samples from the soil near
a.smelter. The histogram and summary statistics in Figure 1
show that the available data span several orders of magni-
tude, from roughly 20 to 10,000 ug/g As with most con-
taminated site studies, statistical analysis and interpretation of
these lead data may need to recognize two separate popula-
tions: a “background” population, with concentrations around
100 ug/g, and a “contaminated” population with concentra-
tions around 500 ug/g or greater. A scatterplot of lead concen-
tration versus distance from the smelter (Figure 2) shows that
lead concentrations tend to be higher close to the smelter.

The histogram and the scatterplot both help to document the
understanding that the soil has been contaminated by lead from
the smelter. Though these conventional statistical surmmaries
certainly help to document the effect of the smelter, a simple
map, such as the one shown in Figure 3, is usually much more
direct and obvious. The map in Figure 3 has lost some of
the detail in the data by coding the lead values according to
their order of magnitude rather than presenting the exact value.
By sacrificing this detail, however, the visual display is a more
effective vehicle for communicating an understanding of the
effect of the smelter.

Figure 3 is also a rich source of information on other aspects of
the contamination. It shows us that the high lead values tend
to be located north and northeast of the smelter; had we not
already recognized the importance of wind direction, the north-
northeasterly spread of the contamination plume might prompt
us to find out more about local meteorological conditions. We
might also need to learn more about the effect of the river's
floodplain on lead in the soil, since Figure 3 shows a band of low
values that cut across the plume in the northeast quadrant of
the map area. The map also alerts us to short scale variability
at several locations where the sample values change by an order
of magnitude over short distances.

From the factors that control the broad scale features to those
that create short scale variability, all of this information is im-
portant to a thorough study of a contaminated site. An under-
standing of the broad scale controls is critical for characterizing
the site, for estimating the amount of soil that will need to be
remediated and for identifying specific areas that require re-
mediation. An understanding of the short scale variability is
essential for planning a remediation strategy that can deal with
the “hot spots” that commonly occur on contaminated sites.

Though conventional statistical analysis can assist with devel-
oping and documenting our understanding of the data, ex-
ploratory data analysis is much more effective when it incor-
porates displays of data in their spatial context. As with the
example shown in Figure 3, maps and cross-sections often alert
us to other information that will help us to predict contaminant
concentrations and to plan an appropriate remediation strategy.
Even though this additional information is often qualitative —
“the predominant wind direction is from the southwest” or “the
river tends to wash out lead” — and not in the form of hard
quantitative data, it needs to be taken into account. Such
qualitative information will often be helpful in making decisions
about whether to divide the data into separate populations and
can also assist with the identification and treatment of outliers.

GUIDANCE DOCUMENT NO.12-3 : SPATIAL DESCRIPTION

DATA POSTINGS

One of the simplest and most common ways to display data
in their spatial context is to post each data value beside its
corresponding sample location. Figure 4 shows an example of
a data posting for the 180 lead samples discussed earlier.
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Figure 4 A data posting of the 180 lead samples.

One advantage of such a display is that it provides a detailed
look at each and every sample location and therefore serves as
a good basis for checking whether any samples are mislocated.
When data are merged from different sources, erras can eas-
ily creep into the coordinate information. Coordinates can be
inadvertently reversed if a data base that lists latitude before
longitude is merged with one that lists east before north a x
before y. Coordinates can also become confused when each
organization that collected samples has used their own version
of a local coordinate system. With these and other sources
of location errors, a data posting is often the first warning of
problems with the coordinate information. ’

Data postings are often necessary for recognizing and inter-
preting aberrant sample values or outliers. As discussed in the
document entitled OUTLIERS, a sample value may be regarded
as an outlier if it is inconsistent with all of the other nearby
sample values. A data posting also serves as a good basis
for detecting errors in numerical computations. If a contour
map is used as the basis for calculating remediable volumes,
for example, the interpreted contour lines should be checked
for consistency with the original data. Between human error
and software bugs, it is possible that computer-generated con-
tour lines might not correctly honour the data. A data posting
provides a straightforward way of checking whether software is
producing sensible numerical interpretations.

[The distinct disadvantage of data postings is that they usually

present so much detail that they do not gve a quick visual ap-
preciation of where the contamination lies. By sacrificing some
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of the detail in the display, and colour coding the data values
into several different categories, we can make the map more
effective as a vehicle for communicating our understanding of
the data. Though Figure 4 is more detailed than Figure 3, it
is less effective as graphical support for the point of view that
the contamination extends downwind from the smelter.
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Figure 5 A map of the lead sample values on which the symbol
size is proportional to magnitude of the lead concentration.

If the creation of colour or greyscale maps and cross-sections
is difficult, due to computer hardware or software limitations,
a similar visual effect can often be accomplished by using sym-
bols of different sizes to code the data values into different
categories. Figure 5 shows the 180 lead samples with the size
of each sample dot scaled to the magnitude of the lead con-
centration. As with Figure 3, this style of presentation does
not carry all of the detail of a data posting but presents a more
immediate visual sense for where the contamination is highest.

CONTOUR MAPS

Perhaps the most traditional format for displaying earth sci-
ence information is a contour map. On this type of display,
focations of equal value are connected to form contour lines (or
“isopleths” ). For those who are familiar with this type of dis-
play, these contour lines communicate useful information about
the spatial arrangement of the data values. Figure 6 shows a
contour map of the lead data used in earlier examples.

‘One of the problems with contouring contaminated site data is
that the skewness of the data makes it hard to choose a single
appropriate contour interval. Attempts to use'a common con-
tour interval for the entire map usually result in some regions of
the map being cluttered with too many contour lines and other
regions being empty. With skewed data, it is often necesary
to show two contour maps or, as in the example in Figure 6,

3

to take some liberty with the conventional format by using two
different contour intervals. In Figure 6, the contour interval for
the thinner lines is 100 ug/g and 500 ug/g for the thicker lines.

500
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Figure 6 A contour map based on the lead data in Figure 4.
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Though contour maps are a familiar display format for most
earth scientists, they are not always ideal for exploratary data
analysis since they do not present the raw data in their orig-
inal form but present instead an interpretation that involves
numerical processing of the original data. Contouring is not.a
unique exercise; whether it is done manually or on a computer,
different people (or different programs) can produce different
contour maps from the same set of original data.

Different contour maps of the same data reflect different ap-
proaches to various arbitrary choices that need to be made.
One of the most critical of these is the choice of a method for
interpolating between the available sample data; another is the
choice of a method for tracing curved lines through a series of
control points. In the most popular and commercially success-
ful contouring software packages, a lot of emphasis is placed on
aesthetics — a contour ma p that shavs smooth lines and gentle
undulations is preferred over one that has jagged contour lines
and a lot of short scale variation. Though aesthetics do play an
important role in the visual display of quantitative information,
we should not turn a blind eye to other issues. There is an
implicit tradeoff in making aesthetics our first priority: smooth
and. gentle undulations usually come at the price of ignoring
short scale variation. The data posting in Figure 4 shows that
the actual data fluctuate much more than the contour map in
Figure 6 suggests. For example, due north of the smelter in the
floodplain of the river is a pair of samples that are very close
to one another; one has a lead concentration of 2,950 ug/g and
the other has a lead concentration of only 59 ug/g In this same
area, the contour map in Figure 6 does not show this sudden
short scale variation.



4

For contaminated sites where “hot spots" are a major con-
cern, smooth contour maps can instill a complacent belief that
the contamination is well behaved and easily mapped. When
short scale variability is not properly recognized in remediation
planning, the resulting remediation exercise often experiences
large overruns as unanticipated “hot spots” trigger additional
remediation that was not evident on the original contour maps.

Due to their tendency to smooth away short scale variations,
contour maps should not be the sole graphical display of the
spatial distribution of the available data. The impact of the
smoothing that is fundamental to contour maps can be as-
sessed if the contour map is accompanied by other displays
that present the available data with little or no numerical pro-
cessing, such as the data postings, greyscale and symbol maps
‘in Figures 3 through 5.

For many audiences, particularly those who do not have a tech-
nical background, colour or greyscale postings of the data are
much more comprehensible and effective than contour maps.
As a vehicle for communicating our understanding of the spa-
tial context of the data, a contour map is best suited to techni-
cal audiences who are already familiar with the conventions of
contouring. Even when the intended audience is familiar with
contour maps, this type of display should be used only for com-
municating broad features of the spatial distribution since the
smoothing inherent in contouring causes large scale features to
be emphasized at the expense of small scale ones.

LOCAL STATISTICS

The issue of statistical populations is a recurring theme in sta-
tistical studies of contaminated sites; though it is often conve-
nient and tempting to lump all of the data into a single statis-
tical population, it is usually more appropriate to split the data
into two or more separate populations. A simple procedure that
provides useful insight into the lumping-or-splitting decision is
to calculate local statistics within sub-areas. If the available
data have similar statistical characteristics in all the sub-areas,
then it is appropriate to treat them as a single population. The
more common situation is that the statistical characteristics of
the available data are markedly different in some regions. In
such situations, the data should either be separated into dif-
ferent populations or, if no clean separation is possible, the
trends in the data should be analyzed and accommodated in
subsequent statistical analysis.

As an example of the calculation and use of local statistics, Ta-
ble 1 presents a few summary statistics for the lead data in each
of the main quadrants of the map area in Figure 4. These local
statistics show notable changes in the statistical characteristics
across the map area. The lead values tend to be much higher
in the northeast quadrant than in the southwest quadrant; in
addition to being higher, the available data in the northeast
quadrant also tend to be more erratic. These statistical obser-
vations should not be used as support for carving the site neatly
into four quadrants; instead, they should be regarded as a first
step in developing an appropriate treatment of the data. When
integrated with our earlier remark on the wind direction, this
preliminary set of local statistics could lead to a more detailed
examination of directional trends in the lead concentrations.
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When integrated with the earlier remark on the rivers flood-
plain, these local statistics could lead to further examination of
whether the samples from the floodplain should be treated as
a separate population.

Table 1 Summary statistics for each quadrant.
Quadrant N Mean s cv Median IQR
Northeast 40 940 1740 1.85 384 675
Northwest 56 428 794 1.85 159 179
Southwest 40 131 124 0.95 92.2 108
Southeast 44 240 367 153 170 216

RECOMMENDED PRA CTICE

In addition to the following guidelines, the documents en-
titled UNIVARIATE DESCRIPTION and BIVARIATE DESCRIPTION
also contain guidance that is relevant to spatial description.

1. Reports on statistical studies of contaminated sites should
contain graphical displays that present the available data
in their spatial context.

2. Data should be posted on maps or cross-sections that show
the location of each sample along with the corresponding
sample value.

3. Data postings should be simplified and summarized
through the use of colour, greyscale or symbol size to high-
light the locations of the highest sample values.

4. Contour maps should be used to show the broad features
of the spatial distribution.

5. Local statistics should be presented to assist the reader in
understanding and evaluating decisions about statistical
populations and trends.

REFERENCES AND FURTHER READINGv

In addition to the other guidance documents in this series, the
following references provide useful supplementary material.

Davis, J.C., Statistics and Data Analysis in Geology, 2nd edi-
tion, John Wiley & Sons, New York, 1986.

lsaaks, E.H. and Srivastava, R.M., An Introduction to Applied
Geostatistics, Oxford University Press, New York, 1989.

Jones, T., Hamilton, D. and Johnson, C., Contouring of Ge-
ological Surfaces with the Computer, Van Nostrand Rein-
hold, New York, 1986.

Tufte, E.R., The Visual Display of Quantitative Information,
Graphics Press, Cheshire, Connecticut, 1983.
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THE GENERAL IDEA

Statistical applications for contaminated site studies commonly

make use of theoretical distributions such as the normal and log-
normal distribution. This document presents some of the com-
mon choices for distribution models and discusses their proper-
ties; it is intended to serve two audiences:

e reviewers who need an overview of the common distribu-
tion models and their characteristics, and

e data analysts and interpreters who need information on
how to calculate percentiles and other summary statistics
for some of the common distributions.

This guidance document discusses the normal, lognormal and
exponential distributions, three of the more common and useful
distribution models for statistical studies of data from contam-
inated sites. Before discussing the characteristics of these par-
ticular distributions, there are two things that should be made
clear. First, it may not be necessary to choose a distribution
model at all; for many of the statistical problems commonly
encountered in contaminated site studies, a distribution model
is not necessary. Second, in addition to the three distribution
models discussed here, there are many others that might also
be useful for particular problems at specific sites; Johnson and
Kotz (1970) provide details on a wide variety of alternatives.

Other guidance documents in this series discuss these two
closely related topics. The document entitled NONPARAMET-
RIC METHODS discusses whether or not a distribution model is
necessary and presents some statistical methods that do not re-
quire any distribution assumption. I it is necessary to choose a
distribution model, the document entitled CHOOSING A DISTRI-
BUTION provides advice on how to select an appropriate model
and how to document the reasons for this choice. Readers are
strongly encouraged to read these other two documents so that
they have a more complete appreciation of the various issues
surrounding the selection of a distribution model.

The distribution models discussed in this document have only
one mode; histograms of actual data from contaminated sites
sometimes show two or more modes. Such multimodal be-
haviour is usually due to a mixture of two or more populations.
It is common to find with heavy metals, for example, that the
data represent a mixture of two distributions, one that reflects

the naturally occurring background concentrations and another- .

that reflects the concentrations of material affected by indus-
trial and other anthropogenic contamination. The document
entitled IDENTIFYING POPULATIONS discusses the issue of sep-
arating data into different subpopulations.

Thls guidance document is one of a sanes that outlmes lmporlant baslc statistlcal concepts and pracedures fhat are useful
in contaminated sites studies. BC Environment recommends that these suggestions be followed :where applicable, but is
‘open to other techniques provided that these allematlves are techmcally sound Before a dlfferent methadology is adopted

‘it should be discussed with BC Environment. """

A guide . for revnewers, data analysts and |nterpreters on L
the statlstlcal propemes of common dlstrlbutlon models

THE NORM AL DISTRIBUTION

Overview

The most commonly used (and chronically misused) distribu-
tion model in statistics is the normal distribution. Data values
from a normally distributed population have a histogram that
looks like the one in Figure 1: fairly symmetric with the most
common values representing the middle of the distribution and
with extremely low or high values being equally uncommon.

[SIEN]
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Figure 1 A histogram of normally distributed data.

o

The use of the normal distribution is often defended by invoking
the Central Limit Theorem, which states that any distribution
will tend to look more and more like a normal distribution as we
average values together. While this-is an interesting statistical
fact, it has some important restrictions that limit its practical
relevance for contaminated site studies. The most important
of the assumptions that underlie the Central Limit Theorem is
the assumption that the values being averaged together are in-
dependent. Violation of the independence assumption is, apart
from systematic errors, the most critical violation of the com-
mon statistical assumptions. Soil or water contamination is
not the result of the averaging of several independent events.
Sample values from contaminated site studies rarely have the
pleasing symmetry of the normal distribution; it is much more
“normal” to see a lot of low values and a decreasing proportion
of erratic high ones.

Despite the fact that the normal distribution usually does a
poor job of modelling the distribution of contaminant concen-
trations, it does have a useful role to play in some specific ap-
plications. Certain variables, such as porosity in many ground-
water studies or the pH of soil or water, have distributions that
are fairly symmetric and that rarely have the kind of extreme
values that are characteristic of contaminant concentrations.

Classifying stockpiled material based on the average concen-’
tration of the stockpile is the other common situation in which
the normal distribution may be an appropriate model. The dis-
tribution of the average concentration of a contaminant over
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large homogeneous volumes of material will definitely be more
symmetric than the distribution of the contaminant concen-
tration from discrete samples. The average concentrations of
several stockpiles may, in some situations, be viewed as aver-
ages of many independent values from a common population.
They can be viewed as averages since the true average grade
of any individual stockpile is the average of the vast numbers
of discrete samples that make up that stockpile; they can be
viewed as coming from a common population as long as all of
the stockpiled material is drawn from a homogeneous area; and
they can often be viewed as independen t because the stockpil-
ing process usually removes the spatial correlation that might
have existed in the in situ material. For these reasons, we may
be justified in assuming that average concentrations of stock-
piled material will follow a normal distribution.

Calculation of bercentiles

The smooth symmetric curve in Figure 1 shows the relative
frequencies that the normal distribution model predicts. One of
the attractions of the normal distribution is that this theoretical
curve of relative proportions is fully determined by the mean and
standard deviation of the distribution.

The “standard” normal distribution is one with a mean of 0 and
a standard deviation of 1; many statistical textbooks contain
tables of the percentiles of the standard normal distribution.
The percentiles of any other normal distribution can be cal-
culated by first calculating the corresponding percentile of the
standard normal distribution, and then multiplying the result
by the standard deviation and adding the mean. For example,
suppose we need to calculate the 90th percentile of a normal
distribution whose mean is 50 ug/g and whose standard devia-
tion is 10 ug/g. From a table that gives the percentiles of the
standard normal distribution, such as Table 26.1 in Abramowitz
and Stegun (1970), we know that 1.28 is the 90th percentile
of the standard normal distribution. The 90th percentile of our
normal distribution is therefore

90th percentile 1.28 x Standard deviation + Mean

1.28 x 10 + 50 = 62.8 ug/g

In addition to the tables provided in many books, there are
also some approximations that can be implemented on a pro--
grammable calculator or a computer; Kennedy and Gentle
(1980) provide a good discussion on the numerical approxi-
mations for the percentiles of the standard normal distribution.

68% and 95% co nfidence intervals

Many statistical procedures make use of the fact that a value
drawn randomly from a normal distribution has a 68% chance
of falling within one standard deviation of the mean, a 95%
chance of falling within two standard deviations of the mean
and a 99% chance of falling within three standard deviations
from the mean (see Figure 2). Wherever we see a statistical

L

statement involving 68% or 95% “confidence intervals”, we can

be fairly sure that an assumption of normality has been made.
Not all statistical statements involving 68% and 95% depend
on an assumption of normality, but the vast majority do.

An example of a remediation decision for which the normal dis-
tribution is commonly assumed is the classification of stockpiled
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material. We dont know the true average contaminant con-
centration of the stockpile, but we may choose to view this un-
known average concentration as a value drawn randomly from
a normal distribution. Having decided to model the unknown "
average concentration in '
this way, we now need to
choose the parameters for
this distribution.  Using
samples from the stock-
pile, and the methods
outlined in the guidance
document entitled ESTI-
MATING A GLOBAL MEAN,
we may decide that our
normal distribution has a
mean of 80 ug/g and
a standard deviation of
10.ug/g. Having selected
the parameters for our
normal distribution, we
are now able to make pre-

124

+1 standard deviation

Percentage
of Samples

1234567891001213

.+ 2 standard deviations
S — -

Percentage
of Samples -

dictions about the chance & ¢ 104!

that the unknown aver- g_g- 8!

age concentration will ex- §(}g 6":

ceed various thresholds. &% ‘T
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and a standard deviation 1234

of 10 ug/g, there is a

95% chance that the un- Figure 2  Probability of a value

drawn at random from a normal dis-
tribution falling within one, two and
three standard deviations of the mean.

known average concen-
tration will be between
60 ug/g and 100 ug/g
(two standard deviations from the mean). If we are concerned
only with the chance that the unknown average will exceed a
regulatory limit of 100 ug/g, then the symmetry of the normal
distribution entails that there is only a 2.5% chadnce that the
unknown average concentration will exceed 100 ug/g.

THE LOGNORMAL DISTRIBUTION
Overview

3 &

Distributions of contami-
nant concentrations rarely
have the kind of symme-
try that makes the normal
distribution an appropri-
ate model; it is common
to find that data from .
contaminated site studies Figure 3 A histogram of lognormally
contain many low values distributed data.

and a decreasing proportion of high values. A distribution
model that captures this kind of asymmetry is the lognormal
distribution. Figure 3 shows an example of the histogram of
data drawn from a lognormal distribution; it has a lot of low
values and a steadily decreasing proportion of high ones.
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The lognormal distribution, as the name implies, is one for
which the logarithms of the data values are normally dis-
tributed. It is used for many earth science problems in which -
the data values span several orders of magnitude and have an
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asymmetric distribution. In the same way that the use of the
normal distribution is often defended by arguing that the data
are the result of a large number of independent additive events,
the lognormal distribution can be defended by arguing that the
data are the result of a large number of independ ent multiplica-
tive events. There are a few papers in the technical literature
that use arguments based on reaction rates and chemical reac-
tions to support the point of view that the genesis of certain
kinds of contamination does, indeed, involve a series of inde-
pendent multiplicative events. Despite such observations, it is
fair to say that the success of the lognormal model is not re-
ally due to independent multiplicative events, but due to the
fact that by offering us an asymmetric distribution, the lognor-
mal model corrects the major practical deficiency of the normal
distribution.

Calculation of percentiles

The lognormal distribution shares with the normal distribution
the fact that it is completely determined by the mean and stan-
dard deviation; it does not, unfortunately, share its computa-
tional convenience. The calculation of a percentile is typically
accomplished by first calculating the percentile in terms of the
logarithm and then exponentiating the result. In order to cal-
culate the percentile in terms of the logarithm we first need
to know the mean and standard deviation of the logarithms.
The following equations describe how the mean, m, and the
standard deviation, s, of lognormally distributed values are re-
lated to the mean, a, and the standard deviation, 8, of their

logarithms:
m=e;<p(a+§;) s=my/exp (82) — 1
2
a = log(m) — %— B =4/log [1 + (%)2]

where all of the logarithms are natural (base e) logarithms,

As an example of how to calculate a percentile for a lognor-
mal distribution, we can take the lognormally distributed data
shown in Figure 3 and find their 90th percentile. The mean of
the arsenic values shown in Figure 3 is 18.9 ug/g and their stan-
dard deviation is 20.1 ug/g. Using the equation given above for
B, we can calculate that the standard deviation of their loga-
rithms should be 0.87; and, using the equation for ¢, their mean
should be 2.62. As discussed earlier in the section on calculat-
ing percentiles for a normal distribution, tables from reference
books tell us that the 90th percentile of a normal distribution
is 1.28 standard deviations above the mean. So, in terms of
the logarithms, the 90th percentile would be

1.28 x Standard deviation + Mean
1.28 x 0.87 +2.62 = 3.73

This result needs to be exponentiated to get the 90th percentile
of our original arsenic values:

90th percentile of logs

I

90th percentile of original values = exp(3.73) = 41.8 ug/g

In addition to the exact calculations that can be done with the
equations given above, there are some rules of thumb that may
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be useful to get a quick idea of where various high percentiles of
a lognormal distribution lie. Most of these back-of-the-envelope
calculations make use of the coefficient of variation (Cv), which
is the ratio of the standard deviation to the mean, and express
the percentile as a multiple of the median (not the mean). For
a lognormal distribution with a Cv of 1 (the standard deviation
is equal to the mean), the 90th percentile is roughly three times
the median, the 95th percentile is nearly four times the median
and the 99th percentile is nearly seven times the median. If
the CV climbs to 2 (the standard deviation is twice the mean),
then the 90th percentile is five times the median, the 95th
percentile is eight times the median and the 99th percentile is
almost twenty times the median.

The arsenic data shown in Figure 3 have a median of 13.7 ug/g,

and their coefficient of variation is close to 1. We can use the

rules of thumb given above to conclude that the 90 th percentile
will be fairly close to three times the median, or roughly 41 ug/g
— a quick, but still very good, app roximation to the exact value
of 41.8 ug/g that we calculated earlier:

THE EXPONENTIAL DISTRIBUTION

Overview 2

The lognormal distribu- g 9

tion is not the only dis- gg 8

tribution that allows us to SR &

capture the fact that low £% ‘

values are more common ;’ H ) =
than high ones. One of 0 20 4 0 80 . 100

40 60
the other common distri- PCB (in ug/g)
butions that has the same Figure 4 A histogram of exponen-
kind of asymmetry as the tially distributed data.
lognormal distribution is the exponential distribution. Figure 4
shows an example of the histogram of data drawn from an
exponential distribution. Like the lognormal distribution, it has
a lot of low values and a steadily decreasing proportion of high
ones. |t differs from the lognormal distribution in the behaviour
of the very lowest values. For the exponential distribution,
lower values are always more common than higher ones; for
the lognormal distribution, the very lowest values are actnally
not quite as common as some of the slightly higher values. In
Figure 4, the tallest bar on the histogram is the first one: on
Figure 3, however, the first bar is not the tallest one. The
curve drawn with the heavier line in Figure 4 shows the relative
frequencies that the exponential distribution model p redicts.

While normal and lognormal distributions need two parameters,

the mean and the standard deviation, the exponential distribu-
tion is completely determined by its mean. The standard devi-
ation of an exponential distribution happens to be equal to the
mean, so this distribution may be appropriate for data whose
coefficient of variation is close to 1. The calculation of per-
centiles for an exponential distribution is more straightforward
than for the lognormal distribution since the mean is the only
parameter involved. Percentiles for an exponential distribution
can be calculated using the following equation:

p-th percentile = —m x log [1 — _1%6]

where m is the mean and the logarithm is the natural (base
e) logarithm. Using the PCB data shown in Figure 4 as an
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example, their mean is 34.2 ug/g, so their 90th percentile is
calculated as follows: '

90th. percentile = —34.2 x log [1 - ——9—0——]

100
= 787 ug/g

In addition to the exact calculation given above, there are some
rules of thumb that can be used to get a quick approximation
of some of the high percentiles. For an exponential distribu-
tion, the 95th percentile is three times the mean and the 99th
percentile is almost five times the mean. The 90th percentile
is not very close to being a simple multiple of the mean; it
happens to be 2.3 times the mean.

ASYMM ETRIC CONFIDENCE INTERVALS.

When discussing the normal distribution, we pointed out that
68% of the values fall within one standard deviation of the mean
and 95% fall within two standard deviations. This property of
the normal distribution is often used as the basis for making
statements about the -“confidence intervals” for an estimate.
The typical assumption is that the quantity we are trying to
estimate can be modelled by a normal distribution, that our
estimate represents the mean of this distribution, and that we
have somehow been able to express the uncertainty in our esti-
mate as a standard deviation. The guidance document entitled
ESTIMATING A GLOBAL MEAN gives an example of this type of
_ procedure where, under an assumption of independence, the
mean of a statistical population can be estimated by m, the
mean of the available samples, and the standard deviation of
this estimate is oy = s = VN where s is the standard devia-
tion of the individual samples and N is the number of available
samples. Though-this approach is valid for quantifying the un-
certainty on the mean of any distribution of values, whether
normal or not, an assumption of normality is made as soon as
we use this information to report mom as our “68% confi-
dence interval” or m=+20my, as our “95% confidence interval”.

Table 1 Lead concentrations (in ug/g).
12 191 872 13 52 92 43 17 5 59

With dat a that are clearly skeved (as are most data from con-
taminated site studies), the uncertainty about the mean is not
likely to follow a normal distribution, especially if there are only
a few samples available for estimation. Table 1 shows an ex-
ample of 10 samples of lead concentrations in the soil from a
contaminated site. Using these ten data, and assuming that
they are independent, we can estimate that the mean of the
population from which they came is 135.6 ug/g and that the
standard deviation of this estimate is 83.7 ug/g. Up to this
point, we have made no assumption about the underlying dis-
tribution, we have simply applied the equation given above.
Given the very evident skewness of these data, it makes little
sense to assume that the uncertainty on our estimate is going
to follow a normal distribution. The normal 95% confidence
interval, for example, would be 135.6+167.4 ug/g; a dose of
common sense tells us that there's not a lot of meaning in a
confidence interval that goes down to -31.8 ug/g on the low
side.
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When the quan tiy we are trying to estimate is better mod-
elled by a skewed distribution, it is more useful to calculate
confidence intervals directly from the percentiles than to use
the classical 0 and 420 intervals. Regardless of the distribu-
tion, there is a 95% chance that a value will fall between the
2.5th percentile and the 97.5th percentile, so we can use these
percentiles directly to report a 95% confidence interval. This
approach works for any distribution, even a normal one, and
is the only sensible way to report confidence intervals where
the distribution is not normal. To continue with the example
of the data in Table 1, it is more appropriate to assume that
their unknown true mean follows a lognormal distribution with
the mean and standard deviation reported above. Using the
method outlined earlier, in which we calculated the percentile
in terms of the logarithm and then exponentiated the result,
the 2.5th percentile of our unknown mean is 37.9 ug/g and
the 97.5th percentile is 351.4 ug/g. Using this information, we
can report an asymmetric 95% confidence interval of 37.9 -
351.4 ug/g for our estimate of the mean.

RECOMMENDED PRA CTICE

1. If a distribution model is necessary for some calculation,
and if a normal, lognormal or exponential model has been
chosen, the equations given in this guidance document can
be used to calculate percentiles. It is recommended that
the exact equations be used wherever possible and that the
rules of thumb be used only for rough calculations. In all
cases where a percentile or confidence interval is calculated
from some distribution model, the type of model should
be reported along with its parameters.

2. If a mean and standard deviation are being used to calcu-
late confidence intervals, the classical &0 68% confidence
interval and 4+2¢ 95% confidence interval should not be
used unless there is good reason to believe that the quan-
tity being estimated follows a normal distribution. If a
skewed distribution is more appropriate, the 95% confi-
dence interval should be reported as the range from the
2.5th percentile to the 97.5th percentile.

REFERENCES AND FURTHER READING

This guidance document does not provide specific guidance on
when to choose a distribution model or how to choose an ap-
propriate distribution model. These issues.are addressed in the
guidance documents entitled NONPARAMETRIC METHODS and
CHOOSING A DISTRIBUTION. In addition to the other guidance
documents in this series, the following references provide useful
supplementary material.

Abramowitz, M. and Stegun, LA., (eds.), Handbook of Math-
ematical Functions, Dover, New York, 1970.

Blake, |.F., An Introduction to Applied Probability, John Wiley
& Sons, New York, 1979.

Johnson, N.L. and Kotz, S., Distributions in Statistics — C on-
tinuous Univariate Distributions, Volume 1, Houghton Mif-
flin, Boston, 1970. ’ '

Kennedy, W.J. and Gentle, J.E., Statistical Computing, Mar-
cel Dekker, New York, 1980.
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THE GENERAL IDEA

The validity of statistical statements can easily be challenged
by questioning any distribution assumption. For example, we
might be tempted to take data from a contaminated site, cal-
culate that their mean is 50 ug/g and their standard deviation
is 10 ug/g, and then use this information to predict that there
is a less than a 1% chance that samples from the same pop-
ulation will exceed a threshold of 80 ug/g. This statement is
defensible only if we can also defend the implicit assumption
that the data values follow the classical bell-shaped normal dis-
tribution. The type of contaminant concentration data that
we typically collect from contaminated sites very rarely follow
a normal distribution, however, and any predictions that follow
from this initial assumption are difficult to defend.

Though we try to make sure that our assumptions about un-
derlying distributions are appropriate — choosing skewed dis-
tributions, for example, to model contaminant concentrations
— we always run the risk that regardless of the distribution we
choose, someone is going to challenge our predictions based
on the fact that we assumed a particular distribution that we
can never prove is correct. Fortunately, for many of the sta-
tistical problems that arise in contaminated site studies, there
are methods that allow us to solve the problem without making
any assumption about the underlying distribution. The predic-
tions that we get from such nonparametric procedures will be
defensible regardless of the assumption that anyone wants to
make about the underlying distribution.

This guidance document presents some of the more common
_ and practically useful nonparametric methods. In addition to
demonstrating how they can be used in practice, this document
also discusses the advantages and disadvantages of these non-
parametric methods, There are two other documents in this
series, DISTRIBUTION MODELS and CHOOSING A DISTRIBUTION,
that discuss related issues.-

ADVANTAGES OF NONPARAME TRIC METHODS

Inappropriateness of the normal distribution

The main advantage of nonparametric methods is that they
do not require us to assume that data are normally distributed.
Even though an assumption of normality underlies the vast ma-
Jjority of statistical procedures that are in common use, it is a
very questionable assumption in contaminated site studies. Fig-
ure 1 shows a typical example of a histogram of sample values
- from a contaminated site along with some of the common sum-
mary statistics. These data have a mean that is much larger
than their median; they show a large proportion of low values
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and a decreasing proportion of high ones. A normal distribution
would show none of these characteristics; its mean and median
would be very similar and its histogram would look symmetnc
with similar proportions of low and high valiues.

Mean = 43.0 ug/g
8 a0l M Standard deviation = 99.7 ug/g
a
E _ Minimum = 2.44 ug/g
a T Lower quartile = 7.84 ug/g
5 Median = 15,9 ug/g
10T Upper quartile = 31.9 ug/g
.qé _ Maximum = 1,040 ug/g
5 54 Interquartile range = 24.1 ug/g
=

0 t L t i
10 20 30 40 50

As (ug/g)

Figure 1 A histogram for measurements of the arsenic concentra-
tion in the soil from a contaminated iandfill site.

Typical of the kinds of statistical predictions that depend on

a prior assumption of normality is the use of the mean and

standard deviation to build confidence intervals. Wherever w e
see m=-o being used as a 68% confidence interval, or m=+20 as

a 95% confidence interval, we are seeing a result that depends

on an assumption of normality. If the unknown values that we
are trying to predict do follow a normal distribution, then 68%

of the values will fall within one standard deviation of the mean
and 95% of them will fall within two standard deviations. If,

however, the values do not follow a normal distribution (and

this is more commonly the case in practice), then the traditional
confidence intervals are meaningless.

In a nonparametric approach we make no assumption about
the underlying distribution. This makes our predictions more
robust in the sense that they do not depend on whether or not
the underlying distribution is normal.

No need for any distribution model

Nonparametric methods are particularly useful in the early
stages of a contaminated site study, where there are typically
very few data yet available and, even if we intend ultimately
to use a parametric technique that assumes some distribution
model, we do not yet have enough data to allow us to choose
an appropriate distribution model. Table 1 shows an example
of a few measurements of the PCB concentration in the first
ten samples collected from a contaminated site. Suppose that
at this very early stage in the study we wanted to make some
statement about whether the median for the entire population
could be 10 ug/g. Any parametric technique would require us
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to first make an assumption about the underlying distribution
from which these ten values come. With so few data at our
disposal, it is very difficult to decide what kind of distribution
might be an appropriate model for the PCB values. As discussed
in greater detail later in this guidance document, this question
about the median can be answered with a nonparametric tech-
nique that does not require us to assume anything about the
underlying distribution.

Table 1 PCB values (in ug/g).
<1 512 179 346 <1 224 115 482 7.8 314

Ease of calculation and interpretation

The common nonparametric methods are very simple to apply.
They usually work with the ranks of the data or with simple
counts of values above and below the median and are therefore
easy to calculate manually or to implement on a computer.

Another advantage of nonparametric statistics is that they are
often easier for non-statisticians to understand and interpret.
As discussed later, some of the graphical displays that are based
_on nonparametric statistics, such as the percentiles of the dis-
tribution, are more straightforward than other more traditional
displays and still convey as much useful information.

Ability to work with no-detects

One of the other advantages of many nonparametric techniques
is that they can accommodate values belowv detection limit
without assigning such samples some arbitrary value (such as
half the detection limit). As we will see later, we can make
statistical tests with data such as those shown in Table 1 even
though we do not know the exact value of every sample.

DISADVANTAGES OF NONPARAM ETRIC METHODS

Not as efficient

The principal limitation of nonparametric methods is that they
are not as efficient or powerful as parametric methods that
are based on a known underlying distribution. For example, if
we are trying to use statistics to document that two groups
of data should be treated as separate populations, and if we
already know that it is reasonable to assume that the data val-
ues in both groups are normally distributed, then a parametric
test, such as the t-test, will be able to discriminate more ef-
fectively between the means of the two groups than would the
corresponding nonparametric test described below.

Unable to extrapolate beyond data

The assumption of a specific distribution model is very pow-
erful and buys us a lot of predictive power. Once we claim
to know the distribution that the data represent, and we have
chosen the.parameters of our assumed distribution (such as the
mean and the standard deviation for the normal distribution),
we are then able to leverage our assumption and predict the
behaviour of the entire distribution. For example, a parametric
approach gives us the ability to predict the 99th percentile even
if we haven't actually got a sample value that high yet. With
its fundamental philosophy of avoiding unnecessary distribution

models and letting the data speak for themselves, a nonpara-
metric approach has no additional information to leverage be-
yond the data themselves; if we have only ten sample values,
it will not be possible to predict the 99th percentile with a
nonparametric approach.

Need more data

By letting data speak for themselves rather than letting a dis-
tribution model do the speaking for them, nonparametric meth-
ods provide statistical predictions that are not compromised by
unnecessary distribution assumptions. The price for this strict
adherence to data, however, is that nonparametric methods
cannot make strong statistical statements with few data.

NONPARAMETRIC DATA ANALYSIS

Percentile—based statistics

The two statistics that are most commonly used to describe a
distribution are the mean and standard deviation. The firsgt of
these is a measure of the center of the distribution, the second
is a measure of the spread of the distribution. The popularity
of these two particular statistics is due, in large part, to the fact
that they are the common parameters for the normal distribu-
tion. Though they are commonly used, thes two statistics are
often of little value for exploratory data analysis since they are
both strongly influenced by extreme values, With the arsenic
data shown in Figure 1, for example, it is questionable whether
the mean of 43.0 ug/g is really describing the center of the
distribution, or whether the standard deviation of 99.7 ug/g is
telling us anything useful about the spread of the values. In
this particular example, as in many other actual data sets from
contaminated site studies, a few extremely high values have a
profound influence on these two statistics.

Nonparametric methods rely on “rank” or “order” statistics
that are simply the percentiles of a distribution. Rather than
use the mean to describe the center of the distribution, non-
parametric approaches more commonly use the median or 50th
percentile. The difference between the upper quartile (75th
percentile) and the lower quartile (25th percentile) is called the
“interquartile range" and is the nonparametric alternative to
the standard deviation for describing the spread.

For most people, the median corresponds more closely to their
visual sense of where the center of the histogram lies than does

the mean. Similarly, their visual sense for the spread of the dis-
tribution is closer to the interquartile range than to the standard
deviation. Most of us, statisticians and non-statisticians alike,

have a stronger intuitive feel for what the interquartile range is
measuring — the sp read of the middle half of the data - than
we have for whatever it is that the standard deviation is measur-
ing — the square root of the average squared deviations from
the mean?! For the purposes of communicating statistical in-

formation to a non-technical audience, nonparametric statistics

are therefore an excellent supplement to the more conventional

mean and standard deviation.

- Boxplots

A boxplot provides a concise graphical format for displaying
the key nonparametric statistics. Figure 2 shows an example
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of a set of boxplots for the K;O (potash) concentrations from
discrete samples taken from four different stockpiles of cement

" Kiln dust. The box in the middle of a boxplot extends from the .

lower quartile to the upper quartile; the bar in the middle of
the box shows where the median lies. There are a coupk of
different conventions for how to draw the arms that stick out
of the box; the one used in Figure 2 shows them extending all
the way to the minimum on the low side and to the maximum
on the high side. The other common convention is to draw
the arms only part way to the extremes and to plot a star at
each of the very extreme values. Boxplots commonly also pay
homage to the fact that the mean is by far the most common
summary statistic of all and, even though it is not a percentile-
based statistic, it is usually shown with some special symbol —
a black dot in the examples shown in Figure 2.

Pile B

10 Pile A PileC__ Pile D 10
60 I 60
3 50 50
= P
@ 40 - - . 40
530 ' - . l—- 30
20 T T 1 20
. el _1-
10 10
Number of data 39 31 63 85 Number of data
Mean 25.7 261 39.3 26.9 Mean
Maximum 388 391 63.3 42.4 Maximum
Upper quartile 29.9 303 442 32.3 Upper quartile
Median 248 252 35.0 256 Median
Lower quartile 19.8 20.5 30.3 18.8 Lower quartile
Minimum 14.0 16.1 211 12.6 Minimum

Figure 2 Side-by-side boxplots.

A boxplot presents most of the relevant univariate information
that we need from an exploratory data analysis. It gives us a
sense for where the middle of the distribution lies, how spread
out it is and whether or not it is symmetric. The boxplot
therefore offers most of the useful information that a histogram
contains, but in a more compact form that is more amenable
to side-by-side comparisons between different groups of data.

NONPARAM ETRIC TESTS

Chebyshev's inequality for confidence intervals

Earlier, we pointed out that the use of mto for calculating 68%
confidence intervak is fine for the normal distribution but does
not work for other distributions.
parametric result known as “Chebyshev's inequality” that allows
us to build confidence intervals using the mean and standard
deviation even if we don't know the underlying distribution.
Chebyshev's inequality says that for any constant k, the pro-
portion of data that are within k standard deviations from the
mean cannot be less than 1- ( 1 + k )2 If we take k=2, for
example, this inequality tells us that at.least 75% of the dis-
tribution must be within two standard deviations of the mean;
for k=10, at least 99% of the distribution must be within ten
standard deviations of the mean.

There is a century-old non--

Compared to confidence intervals predicted fom any distribu-
tion model, those predicted using Chebyshev's inequality are
broader. For example, the opening example on the first page of
this document involved a distribution with a mean of 50 uy/g
and a standard deviation of 10 ug/g; with these statistical pa-
rameters, an assumption of normality leads to the conclusion
that less than 1% of the data should exceed 80 ug/g. For this
same threshold, which happens to be three standa rd deviations
above the mean, Chebyshev's inequality states that any possi-
ble distribution must have at least 89% of the data within three
standard deviations of the mean; no more than 11% could pos-
sibly be more than three standard deviations from the mean.
This gives us a pessimistic upper bound on how much of the
distribution might exceed 80 ug/g if our assumption of normal-
ity is inappropriate: for any distribution whatsoever, it is not
possible to get more than 11% of the values to be greater than
three standard deviations above the mean.

The sign test for the median

" Earlier in Table 1 we showed ten PCB values and asked if the

median could be as low as 10 ug/g. The "sign test” is a non-
parametric procedure in which all data values above the pro-
posed median are given + signs and all others are given — signs.
W e can test whether the median coull be as low as some spec-
ified threshold, T, by noting that if T Is, indeed, the median,
then regardless of the shape of the distribution, each data value
has the same probability of getting a + sign as a — sign:
’ 1

p+:p_:E

in a sample of size N, the number of observations with a +
sign, N;, will follow a binomial distribution. The probability of
getting more than n + signs is:

Prob[N; > n] [~]

N+ 2 Z (N ,)4 X il

These binomial probabilities are tabulated in most reference
and textbooks on probability and statistics. For large values of
N, most introductory probability books, such as Blake (1979),
discuss good approximations to these binomial probabilities.

Using the data from Table 1 and a proposed median of 10 ppm,
seven of the values would get + signs. The no-detect samples
do not create any difficulty; even though we do not know exactly
the PCB concentration of these samples, we can still assign them
— signs since they are definitely below 10 ppm. The probability
of getting seven or more + signs out of a total of ten tries is:

3 <7 T aixel Tixo Torxior = 0172

Regardless of the underlying distribution, the chance that its

median is 10 ug/g or lower given the ten observed values shown
in Table 1is about 17%.

The sign test can be adapted to test for any percentile by
changing the equation given above to accommodate the fact
that p4 and p_ are no longer the same:

NI - ;
Prob[N.,_ > n] = ZW X p+| X p_(N-I)

[1] 10 { 10! 10! 10! 10!




4 GUIDANCE DOCUMENT NO.12-5 : NONPARAMETRIC METHODS

The Wilcoxon rank-sum test

Nonparametric methods for testing the difference between two
groups of data usually deal with the ranks of the data. In a
group of N data, the ranks are simply numbers rom 1 to N
that order the data from smallest to largest: the smallest data
value has a rank of 1, the second smallest has a rank of 2 and
so on up to the largest data value, which has a rank of N.

With two groups of data, the first containing Ny samples and
the second containing No samples, the Wilcoxon rank-sum
statistic, W, is created as follows:

1. Combine both groups of data, creating a large group with
N samples.

2. Assign ranks to the data. -

3. Let W be the sum of the ranks of all the data that came
from the first group.

To test whether the two groups are significantly different, the
Wilcoxon rank-sum test compares W against tabulated values
of critical values. These tables are given for various values of Ny
and No. They show the range of values that W can have if the
two groups of data actually come from the same population. If
the observed value of W falls outside the range given in such
tables, we accept this as evidence that the differences between
the data values in the two groups are too large to be explained
by chance alone; a more plausible explanation than mere chance
is that the data values in each group were drawn from different
populations.

if the values of Ny and Ny are larger than those that appear in
reference tables, there is an another way to check if W-is too
extreme. W e calculate the following test statistic

W — N1‘(N1+N2+1)
R B

12

Z=

and check to see if |z| is greater than 3. If it is, then the chance
that the differences between the two groups are due to chance
alone is less than 1%, so values of z outside the range -3 to +3
are accepted as evidence that there are significant statistical
differences between the two groups.

As an example of the application of the Wilcoxon rank-sum
test, consider the problem of checking whether the following
four PEB values- might belong in the same—group as the ten
shown earlier in Table 1: <1, 5.2, 92 and 1.9 ug/g. These
four values seem to be low compared to those seen earlier, but
could this just be chance?

When the four new values a re combined with the other ten to
make a group of 14 samples, the three lowest values are all
no-detects. Since we can't sort out the order of these three
and don't know which should get the rank of 1, which should
get the rank of 2 and which should get the rank of 3, we assign
the average rank of 2 to each of these three tied values. The
four new values therefore get ranks of 2, 4, 5 and 7; the sum of
these ranks is 18. Tabulated values of the Wilcoxon rank-sum
“statistic (Finkelstein and Levin, p. 563 — 564) show that with a

group of 4 samples being compared to a group of 10 samples,
there is a 90% chance that W will be between 16 and 44. So
although the new values tend to be on the low side, we cannot
reject the possibility that they could actually be from the same
population as the original ten values shown earlier.

RECOMMENDED PRA CTICE

1. When presenting a statistical summary of data collected
from a contaminated site, use percentile-based statistics,
such as the quartiles and the median to supplement the
more traditional mean and standard deviation.

2. Use boxplots as an alternative to histograms for graphical
display purposes, especially when documenting a compar-
ison between two or more groups of data.

3. Wherever a statistical prediction calls for a prior assump-
tion about the underlying distribution, use a nonparamet-
ric alternative as a way of checking the sensitivity of the
conclusion to the distribution assumption.
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THE GENERAL IDEA

Many statistical procedures used in contaminated site studies
involve assumptions about the underlying distribution of data
values. If these assumptions are poorly founded, our statistical
interpretations may be very misleading; we must be clear about
our assumptions in order not to waste time on meaningless
calculations. Even if our assumptions are well founded, a failure
to state them clearly or to justify them in a report may leave
doubt in a reviewer's mind about the validity of our conclusions;
we owe it to those who eventually review our work to provide
a clear statement of what has been assumed and why.

This document discusses the choice of a distribution model and
recommends procedures for providing supporting documenta-
tion. It begins with an example that demonstrates how dif-
ferent assumptions about the underlying distribution can lead
to very different remediation decisions. It then presents three
common distribution models and describes statistical tools and
procedures that can help us make an appropriate selection. It
closes with a section that discusses whether or not a distribu-
tion- model is necessary; many of the issues that we confront
in statistical applications on contaminated site studies can be
addressed adequately without assuming any distribution model.

There are other documents in this series that the reader should
also examine. DISTRIBUTION MODELS provides an introduc-
tion to the distribution models discussed here and provides
more detail on their statistical characteristics than is covered
in this document. NONPARAMETRIC METHODS discusses statis-
tical methods that do not require any distribution assumption.
IDENTIFYING POPULATIONS addresses the problem of separating
data into subpopulations, a common concern when the distri-
bution of the available data appears multimodal and may reflect
a mixture of two or more distributions.

INTRODUCTORY EXAMPLE

Even with exactly the same sample data, different choices of
distribution models can lead to différent remediation decisions.
To take a simple example, consider the data shown in Table 1;
these are measurements of the total wlatile petroleum hydro-
carbon (VPH) concentration in ten discrete samples taken at an
early stage from a site containing roughly 50,000 cubic metres
of soil, some of which may be contaminated.

Table 1 VPH values (in ug/g).-
2 16

11 41 3 19 52 7 -107 81

As a preliminary step, we might need to get a ballpark estimate
of how much soil is axsidered industrial quality according to

‘ A gulde for data analysts and |nterpreters on how to select
an approprlate dlstnbutnon model and document the chmce

it should be discussed with BC Environment, ="

................................................................................

BC Environment regulations and how much has to be regarded
as waste and removed from the site. We therefore decide to
use statistics to help us estimate the proportion of material that
exceeds the BC Environment industrial soil quality threshold of
200 ug/g VPH. Three of many possible distribution models we
could adopt are:

e The data are from a normal distribution.
e The data are from an exponential distribution.

o The distribution of total VPH values over the entire area is
“exactly the same as that currently shown by the ten avail-
able samples (i.e. the highest value is exactly 196 ug/g).

If we assume that the sample values given in Table 1 are in-
dependent, we can use them to estimate a mean of 53.6 ug/g
and a standard deviation of 60.6 ug/g for the underlying pop-
ulation. Using methods described in DISTRIBUTION MODELS,
we can calculate that if the data are normally distributed, then
0.8% of the underlying distribution would exceed 200 ug/g
This corresponds to about 400 cubic metres of soil that could
not be cusidered industrial quality and would have to be removed
from the site. Under the second assumption, we can use the
same information to calculate that if the data are exponentially
distributed, then 2.4% of the underlying distribution would ex-
ceed 20 ug/g. This corresponds to about 1,200 cubic metres
of soil that could not be considered industrial quality Finally,
if we adopt the third assumption, then all of the soil could be
considered industrial quality and none would have to be removed
from the site.

The three assumptions lead to very different predictions about
how much material will need to be remediated, with the differ-
ence between their corresponding costs amounting to several
hundreds of thousands of dollars.

As this example shows, the choice of an appropriate distribu-
tion model may be critical, especially when it is based on few
samples and is used to predict the probability of extreme events.

SOME COMMON DISTRIBUTION MODELS

This guidance document discusses the three distribution models
shown in Figure 1: the normal, lognormal and exponential dis-
tributions; these are the distribution models whose properties
and statistical characteristics are described in DISTRIBUTION
MODELS. While these are three of the more common and use-
ful distribution models for statistical studies of contaminated
sites, there are many other distribution models that may also
be useful for particular problems at specific sites; Johnson and
Kotz (1970) provide details on a wide variety of alternatives.
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HOW TO CHOOSE A DISTRIBUTION MODEL

When confronted with the need to document why we have cho-
sen a particular distribution model, there are several different
types of arguments that we can present. Some of these are
specific quantitative calculations, others are more qualitative.
Ideally, we should be able to use both kinds of arguments.

Symmetric or not? (a) Normal
One calculation that can 124
help us decide whether
to choose a symmet-
ric distribution, such as
the normal . distribution,
or an asymmetric one, )
such as the lognormal 0123456789100121314
. o Soil pH
_or exponential distribu-
~ tions, is to compare the (b) Lognormal
mean to the median. 24
With symmetric distribu-
tions the two should be
just about the same; with
the asymmetric distribu- :
tions commonly encoun- o M e
tered in contaminated site 0 1 20 30 40 80
studies, the mean is often As (in ug/g)
much larger than the me-
Ldian. A boxplot provides 2

Percentage
of Samples
e

Percentage
of Samples
?

(c) Exponential

a quick graphical check of g ¢ 10
whether the mean is close QE‘ 8
enough to the median 83 e
to warrant an assumption Sy Z
that the underlying dis- o H TS

40 60 80 100
PCB (in ug/g)
Figure 1 Examples of (a) normally
distributed data, (b) lognormally dis-
tributed data and (c) exponentially
distributed data.

tribution is symmetric; if 0
the mean plots outside
the box (i.e. above the
75th percentile) then a
symmetric distribution is
not an appropriate model.
Even if the mean is below the 75th percentile, this does not
mean that a symmetric distribution is appropriate; with large
data sets, we should expect much closer agreement between the
mean and the median if we are going to assume a symmetric
distribution. For a data set containing N values, a symmetric
distribution is not an appropriate model if the difference be-
tween the mean and the median is larger than the standard
deviation divided by v/N.

Histograms, cumulative plots and probability plots

Figure 1 shows a graphical presentation that helps document
the rationale for a distribution model: a plot of the relative
frequencies predicted by the model along with the histogram of
the data. Though this style of presentation may help to sort
out hopelessly inappropriate models, it can also be somewhat

deceptive. Figure 2 shows a histogram of arsenic measurements

from a contaminated site. Superimposed on this histogram is
the relative frequency curve predicted by a lognormal distri-
bution with a mean of 14.1 ug/g and a standard deviation of
10.0 ug/g Though this locks like a good fit, it is very mislead-
ing to claim that the data come from a distribution whose mean

is 14.1.ug/g because the actual mean of the data is 43.0 ug/g.
more than three times that of our theoretical model!

Figure 3 shows a cumulative plot of the arsenic data along
with the cumulative curve predicted by the same theoretical
lognormal model we considered earlier. From this plot it is
clear that although the lognormal does a reasonably good job
with the lower values, it does a very poor job with the high
values. The plot shown in Figure 2 is deceptive because it
doesn't show how badly we do at the very high end. If we are
trying to give convincing graphical support for our distribution
model, we shouid show how the cumulative plot of the actual
data compares to the corresponding theoretical curve predicted
by our distribution model. ’

Mean = 43.0 ug/g
Standard deviation = 99.7 ug/g

™
o
t
<
]

v Minimum = 2.44 ug/g
Lower quartile = 7.84 ug/g
Median = 15.9 ug/g
Upper quartite = 31.9 ug/g

. Maximum = 1,040 ug/g
Interquartile range = 24.1 ug/g

)
oL ri] “thﬂﬂ%
0 10 20 30 40 50
As (ug/g)
Figure 2 A histogram of arsenic concentrations along with a log-
normal distribution model.
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Figure 3 Cumulative plot of arsenic concentrations from Figure 2
along with the same lognormal distribution model.

Probability paper

With certain distribution models, such as the normal and log-

" normal ones, there is a convenient way to check if the cumu-

lative plot of the actual data is close to what the theoretical
model predicts. Rather than plot the actual and theoretical
curves, as we did in Figure 3, we can use special probability
paper whose axes have been scaled in such a way that the cu-
mulative probabilities of the actual data will plot on a straight
line if the data do, in fact, represent the distribution model we
have chosen. With normal probability paper, the cumulative
probability axis is squashed in the middle and stretched at the
ends so that a cumulative normal distribution, which plots as
an S-curve on an arithmetic scale, will plot as a straight line. If
the cumulative probabilities of the data plot as a straight line
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on normal probability paper, then we have some justification
for choosing a normal distribution as a model.

In addition to distorting the cumulative probability axis, lognor-
mal probability paper also uses a logarithmic scale on the data
value axis. If the cumulative probabilities of the data plot as a
straight line on lognormal probability paper, then we have some
justification for choosing a lognormal distribution as a model.

Statistical tests

For any distribution model that we might choose, there will al-
ways be some differences between the proportion of the actual
data values that fall within a particular class on our histogram
and the proportion that should fall within that class accord-
|ng to our theoretical model. The chi-square test (Bratley et

1983) provides a way of testing whether these differences
between the actual and theoretical proportions are significant
enough that we should abandon our distribution model. Unfor-
tunately, this test is very permissive; in those few cases where
it rejects our distribution assumption, we would likely reach the
same conclusion through a comparison of the actual and theo-
retical cumulative probability plots. Other disadvantages of the
chi-square test are that it needs more data to work well than
are commonly available in contaminated site studies, and that
independence is a necessary assumption.

Is there a good default model?

It is tempting to tackle the problem of choosing a distribution
model by taking the point of view that one particular model
is the best choice barring any strong evidence to the contrary.
Unfortunately, there is no distribution that can serve as a good
default for the wide variety of statistical problems that arise in
contaminated site studies since the shape of the distribution

depends on the volume of material in question. A histogram of

discrete sample values from a contaminated site will look much
more skewed than the histogram of the average concentrations
of large stockpiles. Since one of the main reasons for choosing
one distribution model over another is its skewness, it & im-
portant when choosing a preliminary distribution model to be
clear on what volume the data are based.

When dealing with values defined on a relatively small vol-
ume, such as concentrations of discrete or composite samples,
we should expect the distribution of data values to be skewed.
Until we have enough data to confirm or refute a specific distri-
bution, data values based on small volumes should be assumed
to follow an asymmetric distribution, such as the lognormal or
exponential distribution; the normal distribution is not a good
default choice for such data.

A normal distribution is a good default choice only if we know
that we are dealing with values defined on a large and homoge-
neous volume, such as the average concentration of an entire
stockpile. It is important that the volume be both large and ho-
mogeneous. A common yardstick for measuring homogeneity
is the coefficient of variation, which is discussed in UNIVARI-
ATE DESCRIPTION; if the coefficient of variation is greater than
1, then it is not appropriate to assume homogeneity. If the
material is not homogeneous, the contaminant concentrations
typically span several orders of magnitude, and the distribution

of the average concentration of entire stockpiles, even large
ones, may still be noticeably skewed.

As an example of the linkage between the choice of a distri-
bution model and the volume of material under consideratian,
consider the problem of interpreting the results of a composite
sample taken from a stockpile. If we are trying to address the
issue of whether any single discrete sample value in the compos-
ite might have exceeded some threshold then we are concerned
with data values that are based on a very small volume of ma-
terial: a single discrete sample. For this issue, our preliminary
assumption should be that the data values follow a skewed
distribution. With the same sample info rmation, however, we
might be trying to address the issue of whether the average
concentration of the entire stockpile is above some threshold;
we are now interested in data defined on a much larger volume:
an entire stockpile. For this issue, we could adopt a normal
distribution as our preliminary model if we can assume that
the stockpiled material is homogeneous; as discussed in the
document entitled STOCKPILING, such an assumption of ho-
mogeneity is best supported by a careful and thorough in situ
characterization study.

WHY CHOOSE A DISTRIBUTION?

Before choosing a distribution model, it is worth considering
whether we really need one. How is our work made any easier
or better by assuming a distribution model?

A historical perspective

The reason why statisticians seem to spend so much time wor-
rying about an appropriate distribution model lies in the early
part of this century, when data were scarce and computers non-
existent. In an era without computers or calculators, the initial
focus of a statistical study was on finding a tractable, well un-
derstood mathematical model that described the distribution
of the data values. Though the data set in a typical statistical
study from the early part of this century would now be consid-
ered quite a small data set, it was still difficult to deal with the
raw data. Even with as little as 20 or 30 data values, simple
mathematical calculations, such as the mean or the standard
deviation, are tedious when they have to be done manually.

The life of statisticians in the early part of this century was
made much easier by the pioneering work of mathematical
statisticians like Sir Robert Fisher, who added a great deal
to the knowledge of how certain distributions behave. With

" a large and growing literature on the properties of various dis-

tribution models, statistical studies were considerably simplified
if the actual data were replaced by a model. It is possible to
make much quicker progress with a normal distribution model,
for example, than to struggle through manual calculations with
actual data. Once the parameters of the distribution model
have been chosen, typically the mean and standard deviation,
it is possible to make many different kinds of predictions about
the behaviour of the entire population. We could calculate its
percentiles, for example, its skewness, its peakedness, its mode,
its median, and so on — all without having to grind the actual
data through another set of calculations.

With the advent of modern computers, however, the need for a



4 ) ~ GUIDANCE DOCUMENT NO.12-6: CHOOSING A DISTRIBUTION

distribution model becomes questionable. With com puters able
to rapidly sort data, even if there are thousands of values, and

able to calculate even the most complicated statistics in a few -

seconds, why should a tractable and well-studied mathematical
model be of much interest? -

-Advantages of distribution models

Even though their computational convenience is now largely a
matter of historical curiosity, distribution models possess other
advantages.

Some kind of model is necessary if we are trying to make pre-
dictions about events that are so rare that they are never (or
hardly ever) observed. Those weird and wonderful statistics
about how much more likely it is that we'll get hit by a me-
teorite than suffer a fatal accident related to nuclear reactors,
are all based on distribution models for low probability events.
Statistical predictions of this type are very sensitive to the way
that the distribution model behaves for extreme values. As we
saw in the introductory example with VPH concentrations,

there can be considerable variability in predictions about the

chance of exceeding a threshold that no data value has yet ex- -

. ceeded. [f our distribution model predicts a rapid decrease in
the occurrence of extreme values (like the normal distribution
does), then we're not going to calculate a very high chance
of exceeding the threshold; if, on the other hand, the model
predicts a slower decrease in the occurrence of extreme values
(fike the exponential distribution does), then we're going to
calculate a higher chance of exceeding the threshold.

Another advantage of choosing a distribution model is that it
gives us a very compact way of describing a data set. "Where a
need exists to communicate the essential features of a data set
to other people, it is often easier to say something like “the VPH
concentrations follow an exponential distribution with a mean
of 54 ug/g" than to list all of the available data. When used in
this way, the distribution model is useful only if our audience is
already familiar with its shape and statistical parameters.

The use of distribution models as a kind of shorthand notation
for describing data takes on a sharper focus when, in certain
fields of study, the use of specific distributions is so common
that workers in the same discipline can use the parameters of
the distribution as diagnostic features. For example, although
the parameters of the W eibull distribution, commonly calkd A
and «, are not likely to be familiar to most people, they are so
commonly understood by many of the researchers who study
the failure rates of communication systems that experimental
data sets from this area of application are often summarized
with these two parameters alone.

The final advantage of some distribution models is that they -

simplify certain inferences and predictions. The most notably
convenient and computationally simple distribution model is
the normal distribution. In order to quantify the uncertainty
on an estimate, our job is made much easier if we assume that

the errors we might make with our estimate are normally dis- -

tributed. Having made this assumption, all that is needed to
develop confidence intervals is an estimate of the standard de-
viation of the estimation errors. Once this is available, the 95%
confidence interval goes from two standard deviations below to

two standard deviations above the estimate. When used in this
way, the distribution model is not something that we choose
after thoughtful consideration of our data, it is something that
we hope is appropriate because it makes our calculations eas-
ier. When this hope has no justificati on,eagerness for a simple
and tractable calculation usually leads to misapplication of a
distribution model.

Disadvantages of distribution models

The main disadvantage of using a distribution model is that
it may not be appropriate for a particular set of data. While
one of the commonly used-distributions can usually do a good
job of fitting most of the data, few of them do a good job for
all of the data values. Typically, there are departures betveen
what a distribution model predicts for the occurrence of extreme
values and what the data actually show. With our interest in

_contaminated site studies often focused on the high values, the

good fit of a model over the lower 90% of the data may be
useless if it does a poor job of fitting the critical upper 10%.

RECOMMENDED PRACTICE

1. All distribution assumptions should be made explicit in
reports. ‘

2. If the difference between the mean and the median of a
data set containing N samples is greater than the standard
deviation divided by /N, then it cannot be assumed that
the data come from a symmetric distribution, such as the
normal distribution.

3. The appropriateness of a distribution model should be doc-
umented graphically by comparing the cumulative proba-
bilities of actual data to the cumulative probabilities pre-
dicted by the theoretical model. Such a comparison should
be done on probability paper, if available.

4. If there are too few data to adequately support or refute
a distribution model, then discrete samples should be as-
sumed to follow an asymmetric distribution. Average val-
ues over large volumes, such as stockpiles, may be assumed

- to follow a symmetric distribution, such as the normal dis-
tribution, if in situ characterization has demonstrated the
material to be homogeneous.
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THE GENERAL IDEA

The essence of statistical inference is the borraving of infor-
mation from a group of data to make predictions about how
a particular population behaves. The grouping of data and
the definition of the population(s) of interest are fundamental
and recurring problems in the application of statistical meth-
ods to contaminated site studies. On one hand, the uniqueness
of each and every sample encourages us to split the data into
smaller and smaller groups and to recognize multiple popula-
tions in our data. On the other hand, the need for a sufficient
number of data to support statistical calculations encourages
us to group data_together into larger groups and to work with
fewer populations, each of which contains more data.

As an example of this problem, consider the twenty sample
values listed in Table 1 and shown as a histogram in Figure 1.
Are there two populations here, a "background” o low values
in the 0 to 10 ug/g range and another population of higher
“contaminated” values? Or is there just a single population
that happens to be highly skewed with a lot of low values and
a decreasing proportion of higher ones?

Table 1 20—

44 140 6.3 76 6.5
2.7 89 86 26 14
6.3 67 49 97 5.9
43 5240 32 72
48 86 39 61 89

1.8 120 44 63 9.7 o H-m 0 nﬂm [‘mnﬂﬂrﬂm
7.8 100 20 3.2 85 0 50 100
VPH (inug/q)

14 54 72 8 6.2 !
11 5423 16 3.8 Figure 1 VPH concentrations in soil
samples from a contaminated site.

Percentage
of Samples
s @

w
1

81 94 31 64 110

If these data are viewed as a single population, then an appro-
priate distribution model would need to be asymmetric with a
long tail; a lognormal distribution, for example, could do the
job. On the other hand, if these data are viewed as a mixture of
two populations, then it might not be necessary to use skewed
distribution models; a combination of two normal distributions
mi'ght be more appropriate. These two different approaches to
data analysis and interpretation will lead to quite different pre-
dictions, particularly when trying to estimate the probability of
extreme events.

Unfortunately, there is no statistical test that unambiguously
proves that data belong in a single population or that they
need to be split into separate populations. Trying to test for
whether the data should be grouped or split is a chicken-and-

-egg problem. Until we assume some underlying population, we

have no point of reference against which we can compare our
actual data. Developing such a point of reference requires some
data (or some bold assumptions) and, depending on which data
we choose (or which assumptions we choose to make), we will
either conclude that the data should be grouped o we will
conclude that they should be split.

Despite the awkwardness of documenting that a particular
grouping or splitting decision is appropriate, the issue of identi-
fying the population(s) in a data set is critical. Without a clear
definition of the: population(s), other important issues, such as
the evaluation of outlier data, can not be resolved.

This document presents guidance on identifying statistical pop-
ulations. It begins with a discussion of graphical tools and then
addresses statistical tests that can help with the decision of
whether to treat the data as a single population or as several
separate populations. There are other guidance documents in
this series that contain related material. The one entitled ouUT-
LIERS provides additional insight into methods for evaluating
whether or not a particular sample should be treated as part
of the population; NONPARAMETRIC METHODS provides alter-
natives to the statistical tests outlined here.

QUALITATIVE INFORMATION

The decision to group data into a single population or into sev-
eral separate populations should, wherever possible, take into
account qualitative information. An understanding of the his-
torical use(s) of a site is invaluable in developing an appropriate
statistical treatment of the available data. Field notes that de-
scribe local conditions in the immediate vicinity of each sample
location are also very useful since these often provide critical
clues to the physical, chemical and geological conditions that
influence contaminant concentrations. A clear understanding
of the goal of the study is also necessary in making appropriate
decisions about the statistical treatment of the data; though
it may be appropriate to group all of the data into a single
population for assessing the total volume of soil that requires
remediation at a contaminated site, it may be necessary to
split the data into several populations if the goal of the study
is detailed local mapping of contaminant concentrations.

There are several graphical tools and statistical tests that can
be used to support decisions about grouping data together o
splitting them into several separate populations. These should
not be used by themselves, however, to justify a decision regard-
ing statistical populations. If a probability plot, for example,
suggests that there may be a mixture of two populations at the



2 GUIDANCE DOCUMENT NO.12-7 : IDENTIFYING POPULATIONS

site, then this observation, which is based purely on a quan-

titative consideration of the data, should be reconciled with
the qualitative information about the site. Do the two popula-
tions reflect natural background and industrial contamination?
Are the magnitudes of the values in the population being desig-
nated as "background” consistent with other infarmation about
what the natural background levels should be? Could the two
populations both be due to industrial contamination but from
different sources? If so, are both sources part of the focus of
the study? All of these questions, and dozens of similar ones,
can not be answered with the data values themselves and need
supporting historical and geological information.

GRAPHICAL TOOLS
Probability plots

One of the most useful graphical displays for exploratory data
analysis is a probability plot, an example of which is shown in
Figure 2. On such a graph, data values are plotted on the
x-axis against the cumulative probability on the y-axis. Using
Figure 2 as an example, about 35% of the data values are below
100 ug/g and slightly more than 90% are below 1000 ug/g

The scaling on the axes of a probability plot is often confusing

to non-statisticians. The y-axis is squashed in the middle and
stretched at the ends; the distance between 50% and 60%,
for example, is smaller than the distance between 80% and
60%. This kind of y-axis scale is used on probability plots
because it makes it easier to tell whether the data ae close
to being normally distributed. If both the x and y axes have
a conventional linear scale, then cumulative curves of normally
distributed data will plot as an S-curve. It is difficult to tell if an
S-shaped curve is close to the kind of S-shape that normal data
would produce; it is much easier to tell if the data are plotting
on a straight line. By stretching out the y-axis for the very low
and very high values, and squashing it for the middle ones, we
end up with distorted graph paper on which cumulative curves
of normally distributed data will plot as a straight line.

If the distribution of data is skewed, with many low values and
a decreasing proportion of high ones, it is common to use a
logarithmic scale on the x-axis; this style of log-probability plot
is the one that has been used in Figure 2. With logarithmic
scaling on the x-axis and the distorted probability scale on the
y-axis, cumulative data will plot as a straight line if the data
are lognormally distributed.

Whether the data‘o r their logarithns are normally distributed or
whether they follow some other distribution, a probability plot is
useful for exploring possible sub-populations. If the probability
plot has kinks, with some of the values not following the trend
of the others, this is often taken as evidence that the data

should be separated into different groups. With the example

in Figure 3, the mercury data values show a consistent trend
up to about the 90th percentile; the highest 10% of the data,
however, do not follow the same trend as the lowest 90%. This
behaviour indicates that the highest 10% of the values could be
treated as a separate population. As discussed earlier, however,
the decision to treat the highest 10% as a different population
should be supported by qualitative information’ regarding the
history of the site and the source of contamination.

Cumulative Probability (in %)
83

10 100 1000
Pb (ug/g)

Figure 2 A log-probability plot for lead concentration measure-
ments from the soil in the vicinity of a smelter.
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Figure 3 A log-probability plot showing multiple populations.

Cumulative Probability (in %)
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Figure 4 A log-probability plot that shows a mixture of "back-’

ground” and “contaminated” populations.

7 Figure 4, which uses the VPH data shown in Table 1, shows an-

other type of behaviour that probability plots often exhibit: the
data values seem to plot on two different trends with a grad-
ual transition between the two. Probability plots of this type
are usually due to overlapping mixtures of several populations.
Such mixtures are common in contaminated sites where the
lower end of industrial contamination overlaps with the higher
end of natural background contamination. Sinclair (1974) dis-
cusses how the information from such probability plots can be
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used to develop distribution models for each of the mixed popu-
lations as well as to calculate the proportion of each population
in the mixture.

Side-by-side boxplots

In many contaminated sites there is qualitative information
about the site or the soil conditions that allows us, if we deem
it necessary, to subdivide the data into different groups. When
considering whether such a splitting is appropriate or not, it is
often useful to be able to compare the distributions in the differ-
ent groups under consideration. For example, we might expect
the level of PCB contamination at depth to indicate whether or
not the surface contamination has passed through a clay layer.
This situation differs somewhat from those that we considered
in the previous section. With all of the probability plot exam-
ples shown earlier we started with the data in a single group and
used the probability plot as a tool to study whether it might
be more appropriate to subdivide them. With the PCB example
given in this section, we already have a grouping in mind —
depth from surface and position relative to the clay layer — and
we are trying to decide whether this distinction is important or
whether no subdivision is necessary.

—Above clay—  —Below clay—
Layer A Layer B Layer C Layer D
100 : = 100
-
i
_—— P
G E%'—m—ﬁg == 10
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g = e
01 e 01
No. of data 69 58 398 3 No. of data
Mean - 33.2 231 14 6.9 Mean
Stand. Dev. 65.2 471 20.4 19.2 Stand. Dev.
Maximum 98.8 721 313 19.4 Maximum
Upper quartile 34.6 313 10.2 9.9 Upper quartile
Median 222 17.9 1.2 6.5 Median
Lower quartile 16.8 12.5 4.2 41 Lower quartile
Minimum 21 11 0.2 01 Minimum

Figure 5 Side-by-side boxplots of PCB contamination.

One way of comparing distributions from several groups of data
is to plot their histograms and tabulate some key summary
statistics. Side-by-side boxplots, such as those shown in Fig-
ure 5, provide a more useful graphical comparison. The box in
the middle of each individual boxplot extends from the lower
quartile to the upper quartile of the distribution; the bar in
the middle of the box is the median and the "arms” define the
range (minimum to maximum). The black dot shows the mean
of the distribution.

A boxplot presents most of the relevant univariate information
that we need from an exploratory data analysis. It gives us a
sense for where the middle of the distribution lies, how spread
out it is and whether it is symmetric or not. The boxplot
therefore offers most of the useful information that a histogram
contains, but in a more compact format that is more amenable
to side-by-side comparisons between different groups of data.

Where side-b y-side boxplots fo two groups of data show that
their boxes do not overlap — the central 50% of one group
does not overlap with the central 50% of the other group —
this is evidence that supports treating the two groups sepa-

rately. As with the other graphical and statistical tools for

examining populations, a decision to split data into separate
populations should not be based on boxplots alone but should
also be supported with qualitative information that explains
why the distributions are different.

Scatterplots

Where probability plots suggest a mixture of two overlapping
populations, it is often difficult to identify the population to
which each sample belongs since intermediate values could be
high values of one population or low values of the other. Most
contaminated site studies involve a suite of possible contami-
nants and scatterplots can often be the key to sorting out which
samples belong to which populations.
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Figure 6 Separate populations on a scatterplot.

Figure 6 shows an example in which the copper contamination
consists of two populations that overlap. Using only the cop-
per concentration it is not possible to assign each sample to the
background or contaminated population since the low end of
the contaminated distribution overlaps with the high end of the
background distribution. At this site, mercury concentrations
have also been measured. When the mercury and copper con-
centrations are plotted together on a scatterplot, the separate
populations become clearer. With the use of both variables the
separation of the data into two separate populations is much
more straightforward than when the copper or mercury concen-
trations are used separately.

STATISTICAL TESTS

In addition to the graphical tools that can be used to support
a decision to treat two groups of data separately, there are
some statistical tests that can also provide support for such
a decision. Statistical tests are often used when the decision
to recognize separate populations is not immediately obvious.
With the data shown in Figure 5, for example, it is clea that
the PCB concentrations above the clay layer are different from
those below the clay layer. For the A and B soil layers that are
above the clay layer, however, it is not as obvious whether or
not these should be treated as different populations. Though
their means are different, this could either be due to chance o
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could also be due to the underlying populations being different
in the two layers; even if the two sets of data were drawn from
the same underlying population, we would still expect to see
some differences in their means. There are statistical tests that
help us to decide if a difference between the statistics of two
groups of data is due to chance alone or if it is more likely that
the two groups were drawn from different populations.

The t-test

The t-test is used to determine if the difference between the
means of two populations is “statistically significant”. This test
begins by assuming that the two groups of data are from the
same population and then tries to refute this assumption.

If sets of N data are drawn from a common population, the
means of these different sets will fluctuate around the mean
of the parent population. How much fluctuation we should
expect depends on the value of N; if N is large then the mean
of the actual data will be closer to the mean of the parent
population than if N is small. If the N values in each set are
independent, then om, the standard deviation of the means of
the different sets, is related to o, the standard deviation of the
parent population, by the following equation: om = o + VN,

In addition to using this equation that describes how much the
sample means can fluctuate from the mean of their underlying
population, the t-test assumes that the means will be normally
distributed. Under all of these assumptions — that the means
are, in fact, the same, that the samples are all independent
and that the means are normally distributed — the foll owing
statistic should follow a standard normal distribution:

mi — mo

t a—

. o (2
1
NN

Ni, m; and oy are the number of samples in the first group,
their mean and their standard deviation; N, rp and o are
the corresponding values for the second group. If the value of t
calculated from the equation above is well within the range of
values expected for a standard normal distribution, -3 to +3,
then the difference between the means can well be explained
by the random fluctuations that we expect between groups of
samples drawn from the same distribution. If t is less than -3 or
greater than +3 then it is very unlikely that random fluctuations
alone are causing the difference. The conventional approach is
to interpret extreme values of t as evidence that the two groups
come from different populations.

As an example of the use of the t-test, let us determine whether
the Layer A and Layer B samples from Figure 5 have signifi-
cantly different means. The values that we need to substitute
in the equation for the t-statistic are the following:

Nl =69 my = 33.2 o] = 65.2

N, = 58 my = 23.1 oo =47.1
With these values, the calculated value of the t-statistic is 1.01,
well within the -3 to +3 range that we expect for a standard

normal distribution. This tells us that the difference between

IDENTIFYING POPULATIONS

the mean value of the 69 Layer A samples and the 58 Layer
B samples is not large enough to lead us to believe that the
underlying populations are different.

The t-test given above is what is called a “two-sided" t-test
since it takes into account that neither of the sample means is
exactly the same as that of the underlying population. In sit-
uations where the mean of the underlying population is known
(not a very common situation in contaminated site studies), the
equation given above can be turned into a “one-sided” t-test
by setting my to the true mean and o) to zero. An example
of a situation in which we may prefer to do a one-sided t-test
is the comparison of laboratory measurements of a reference
standard to the accepted value of the standard. In this case,
the true mean is the accepted value of the standard and we
are interested in whether the mean of repeated measurments is
significantly different from this accepted reference value.

The philosophy of the t-test is to make an assumption, namely
that the data are from the same population, and then use ex-
treme values of the t statistic to argue that this assumption is
not very plausible. It should be noted, however, that in believ-
ing that the calculated t-statistic should come from a standard
normal distribution, we are making several other assumptions.
It is possible that the assumption of a common population is
correct and that it is one of the other ones — independence of
the samples or normality of the means — that is incorrect.

There are some statistical tests for differences between popula-
tions that do not make distribution assumptions; some of these
are discussed in the guidance document entitled NONPARAMET-
RIC METHODS. If the samples are not independent (a common
case in contaminated site studies) then the difference between
the two means can be larger than the t-test assumes. i two
groups of data fail the t-test under an assumption of indepen-
dence — if their t-statistic is between -3 and +3 — then they
would also fail a modified version of the test when correlation *
between the samples is taken into account.

REFERENCES AND FURTHER READING

in addition to the other guidance documents in this series, the
following references provide useful supplementary material:

Davis, 1.C., Statistics and Data Analysis in Geology, 2nd edi-
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Sinclair, A J., "Selection of threshold values in geochemical
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Understanding Robust and Exploratory Data Analys:s
(Hoaglin, D.C., Mosteller, F., and Tukey, J.W., eds.), John
Wiley & Sons, New York, 1983.
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THE GENERAL IDEA

In contaminated site studies it is common to find that the data
contain some surprisingly high values. Knowing that such high
values are likely to have a profound effect on statistical analysis
and interpretation, many of us are tempted to dismiss these un-
expected (and possibly unwelcome) observations as “outliers”
and to remove them from the data base. Discarding actual
observations is not a good practice, however, since a thorough
evaluation of the reasons for these unexpected values may lead
to new insights into the data or to a reconsideration of under-
lying assumptions about the data and their distribution.

Whateve r we decide to do with the outliers, tis single decision
will be one of the most critical in our study, If an erroneous
high value is kept it may cause uncontaminated material to be
misclassified as contaminated; such errors are costly because

they lead to needless remediation. On the other hand, the de-

cision to discard erratic high values may be even worse. If such
values represent a previously unforeseen population, then arbi-
trarily discarding them will cause contaminated material to be
left unremediated. With decisions on remediation often hinging
on the proper evaluation and use of outlier values, it is neces-
sary to have some consistency and objectivity in the treatment
of outliers in contaminated site studies. This document aims
to provide this much-needed consistency and objectivity by pro-
viding guidance on the identification and evaluation of outliers.

WHAT 1S AN OUTLIER?

Barnett and Lewis (1984) give the following definition of an
outlier: An outlier in a set of data is an observation that appears
to be inconsistent with the remainder of that set of data. This
definition identifies two aspécts of the outlier problem: the prior
decision to group data together and the apparent inconsistency
that results. One possible solution to the outlier problem will
be to rethink how we have grouped the data — ma ybe the
outlier is providing clues to the existence of another previously
unrecognized subpopulation. Another possible solution will be
to revisit why it appears inconsistent — ma ybe we have faulty
underlying assumptions about how the data should behave.

HOW TO IDE NTIFY OUTLIERS

Figures 1 and 2 show two of the graphical displays that can as-
sist with detection of outliers. Figure 1 is a probability plot of
lead concentration measurements from the soil in the vicinity of
a smelter. For most of the data values, their cumulative prob-
abilities plot on a fairly straight line; at the high end, however,
this trend breaks up. The highest few values fall to the right
of the trend, meaning that these highest values are even higher

than we might expect based on our observations of the rest of
the data. Figure 2 shows a scatterplot of the same lead data
plotted versus their distance from the smelter. The cloud of
points shows a tendency for the lead concentration in the soil
to decrease with distance from the smelter. There are some
aberrant samples, however, that have abnormally high lead val-
ues when compared to other measurements taken at a similar
distance from the smelter,
Outjiers

988 —
995 el ;
Q !-

bid

Cumulative Probability (in %)
33

10 : 100 1000
Pb (ug/g)

Figurel A cumulative probability plot for lead concentration mea-
surements from the soil in the vicinity of a smelter.
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Figure 2 A scatterplot showing lead concentration data used in
Figure 1 versus distance from the smelter.

The probability plot in Figure 1 and the scatterplot in Figure 2
complement each other since the sample(s) that appear as out-
liers on one plot do not necessarily appear as outliers on the
other. A combination of statistical and spatial displays provides
a more complete basis for identifying outliers than would any
single plot.
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in contaminated site studies, where there are several suspected
contaminants, scattefplots of the concentration of one con-
taminant versus another may reveal that some samples have
unusual ratios of the suspected contaminants. For example,
if a plot of lead versus arsenic shows a narrow cloud in which
the Pb/As ratio is quite consistent, then any samples that plot
away from this main cloud could be classified as outliers.

Maps or cross-sections on which the data are colour-coded ac-
cording to their order of magnitude can assist with identifying
dubious samples that have moderate values but are inconsistent
in their spatial context.

HOW TO EVALUATE OUTLIERS

Once an observation has been designated an outlier, we need to
evaluate its significance. It should not be discarded as spurious
until we have explored the possibility that our prior decision
about the populations was reasonable and that our assumptions
about how the distribution should behave are all appropriate.
This examination of our prior decision and our assumptions
must take into account not only the provenance of the data
— where they came from and how they were collected and
analyzed — but also the study objectives. ‘Outlier data that
might be appropriately dropped from one study may still be
useful in another study with a different objective.

The lead data used in Figures 1 and 2 provide a good example
of how data provenance and study objectives impinge on the
treatment of outliers. In Figure 1, there are three values that
might be treated as outliers due to their departure from the
trend shown by the other values. When their distance from the
suspected source of contamination, the lead smelter, is taken
into account (Figure 2), only one of them remains suspicious
— the value that approaches 10,000 ug/g far from the smelter.

In this lead study, the samples were located without consid-
eration of the local site conditions. In addition to collecting
the samples from their designated locations, the field staff also
described the local conditions in the vicinity of each sampling
site. The resulting set of field notes was an invaluable source
of information for decisions regarding the treatment of out-
liers. These field notes record the fact that the value approach-
ing 10,000 ug/g was collected from a junkyard that contained
dozens of leaking car batteries. The knowledge that this sam-
ple is likely affected much more by a very localized source of
contamination — leaki ng battery acid — than by the smelter
allows an appropriate treatment of the outlier value.

Decisions about the handling of outliers are much easier to
make if we maintain a clear audit trail that allows us to trace
each and every data value back through the data base com-
pilation, through the laboratory analysis, through the sample
preparation procedure, and ultimately back to the specific time,
location and conditions under which the sample was collected.
Without a carefully maintained set of field notes ad labora-
tory records, it may become impossible to make appropriate
decisions about outliers.

Data errors

Some outliers are due to human error during sample collection,
preparation and analysis; further errors can occur when analyti-
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cal values are transcribed and compiled into a data base. Sam-
ples may be tagged and labelled incorrectly; they may be con-
taminated during handling in the field, during transpo rtation to
the laboratory or during the laboratory preparation process; the
analytical procedure may not be implemented correctly. Even if
a sample survives all of these possible humiliations, its analyti-

- cal value may be transcribed incorrectly o it may be corrupted

when it is electronically merged into a data base.

One of the few universal rules that we can make about handling
outliers is this: we should not use data values that are clearly in
error. At the same time, however, we should not be too quick
to use the excuse of data errors to justify a decision to discard
outliers. Data errors are a double-edged sword; while they can
provide one of the few non-controversial reasons for discarding
outliers, they also call into question the entire data base. I it
becomes apparent that an outlier value is erroneous, then all
data should be checked to see if any of the other data have
been affected by the same problem For example, if “suspected
contamination” is the reason given for discarding an outlier, we
must also question whether any of the other samples with more
moderate data values might also be contaminated. Particularly
in the case of cross-contamination between samples it is not
appropriate to discard the high values and keep the low ones.
Similarly, if “data transcription error” is the reason given for
discarding an outlier, then we need to consider the possibility
that some of the lower and more moderate numbers that remain
in the data base are erroneously low for exactly the same reason.

Choice of population

If there is no reason to suspect that an outlier is due simply to
human error, we should then consider the possibility that the

* value appears inconsistent with the rest of the samples because

it does not belong in the same group — that we have made
the mistake of mixing apples and oranges. This was the case
with the very high lead concentration from the example shown
in Figures 1 and 2; though the lead concentration in the rest
of the samples might reflect the effect of the smelter, the lead
concentration in the sample that came from the junkyard likely
has very little to do with the smelter.

If qualitative information about the provenance of the data
makes it clear that a particular value is not relevant according
to the study objectives, then we should discard the irrelevant
value from our study and document the reasons for doing so. In
choosing to discard a particular observation for this reason, we
must be clear about why it does not belong to the population
under study. This requires that we have an unambiguous defini-
tion of what population is under study and that we know what
other population the offending data value belongs to. h doc-
umenting the reasons for believing that an outlier belongs to a
different population, we also need to reconsider the study objec-
tives. If an outlier-has revealed a previously unforeseen source
of coritamination, for example, should the study be broadened
to address this new source, or should the objectives remain
unchanged? In the example of the lead contamination'in the
vicinity of the smelter, field notes made it clear that the lead
in one of the sample values was likely due to leaking battery
acid. In addition to identifying this sample as part of a separate
population, we should also consider whether the appearance of



GUIDANCE DOCUMENT NO.12-8 : OUTLIERS

* this unanticipated new population — leaking battery acid —
affects the study objectives.

Distribution assumptions

If we cannot dismiss an outlier as simply erroneous and if we
cannot dismiss it on the grounds that it belongs to a different
population, we can then consider the possibility of rejecting it
on statistical grounds. The decision to use a statistical argu-
ment for discarding an outlier is a desperate last resort, how-
ever, because virtually all of the statistical approaches to the
problem rely entirely on our assumptions about the underlying
distribution. Any statistical argument for the rejection of an
outlier can be turned around into an argument that the un-
derlying assumptions about the distribution are faulty Before
resorting to statistical arguments for rejecting outliers, we need
to document why we continue to believe that our distribution
assumptions are appropriate in spite of the outlier observations.
One of the other documents in this series, entitled CHOOSING A
DISTRIBUTION, discusses this issue in greater detail and provides
recommendations for selecting a distribution and documenting
the appropriateness of the choice.

Discarding outliers for statistical reasons

If, despite the observation of outliers, we are sure that the
assumed distribution is appropriate, outlier values should be
checked for consistency with the assumed distribution. By “as-
sumed distribution”, we mean the distribution that is assumed
for all of the non-outlier values. For example, if we have de-
% cided that a normal distribution is an appropriate model for
our data values, then the estimation of the mean and standard
deviation of our assumed distribution should be based only on
the non-outlier values and should not consider any outliers.

To justify the decision to discard an outlier, we should check
two things. First, we should make sure that there is a very
low probability that the outlier value belongs to the assumed
distribution. Second, we should make sure that it is not part of
a continuous tail of high values. Both of these checks require
the ability to calculate percentiles of the assumed distribution.

To check that the outlier has a very low probability of belonging

.to the assumed distribution, we need to confirm that it falls in
the upper 1% of the distribution. Tables and formulas in John-
son and Kotz (1970) allow us to calculate the percentiles for
the distributions commonly used in contaminated site studies.
For two of the more common choices, here are some rules of
thumb:

" Normal distribution. If the data are assumed to be normally
distributed then any value more than three standard devi-
ations above the mean will be in the upper 1% .

Exponential distribution. If the data are assumed to be expo-
nentially distributed then any value more than five times
the mean will be in the upper 1%.

Most of the distributions commonly used in contaminated site
studies, including the two given above, have a maximum at in-
. finity, so we can never completely reject the possibility that the
outlier might belong to the assumed distribution. If it belongs
to the upper 1%, however, it is an unlikely enough value that
we can continue with the second check.

3

The upper 1% rule should not be the sole basis fa identifying
outliers; in addition to confirming that the outlier value is in
the upper 1%, we should therefore also make sure that it is
aberrant even for a large value. One way of doing this is to
check if there is an unexpectedly large gap between the value
of the highest non-outlier and the outlier. Having made an as-
sumption about the distribution, we can see what the assumed
distribution would predict for the difference between the two
largest values. If the actual difference is more than twice that
predicted by the assumed distribution, then the outlier can be
discarded.

To implement this gap check, we need to know what value the
assumed distribution would predict for the largest two values
in a set of N observations. For the purposes of this gap check,
we assume that the largest two values should correspond to the
following percentiles of the assumed distribution:

' . N-1
Assumed percentile for largest value =-

— X 100
N
. -2
Assumed percentile for second largest value = %_ x 100

Once we know which two percentiles we are interested in, we
then use the standard tables or formulas to find the two cor-
responding values from our assumed distribution. We are not
particularly interested in how these two theoretical values com-
pare to the two highest values that were actually observed: what
we are interested in is their difference. If the difference actually
observed between the outlier and the highest non-outlier value
is more than twice the difference predicted by our assumed dis-
tribution, then the outlier can be discarded as inconsistent.

There are not many rules of thumb for what the difference
described above should be; it will vary with the number of data
and with the specific distribution model being assumed. For
a quick approximation, however, one can assume that the tail
of the distribution behaves like an exponential distribution, in
which case the procedure described above depends aly on the
number of samples. Rather than explicitly checking that the
absolute difference between the actual values is more than twice
the absolute difference predicted by our assumed distribution,
we can implement exactly the same gap check in terms of the
relative difference:

log(N)
log(N) ~ log(2)
If the actual relative difference between the outlier and the high-

est non-outlier value is more than twice the predicted relative
difference given above, then the outlier may be discaded.

Predicted difference (in %) = — 1] x 100

Replacing outliers with new samples

Since there is a loss of information whenever sample values are
discarded, we should always try to replace outlier samples with
new samples. This is especially important if the sample val-
ues are being used for local mapping to support remediation
planning. The new sample should be taken as close as pos-
sible to the discarded outlier, ideally within 1 m. If the new -

- sample value is the same as the discarded outlier (within the

tolerance predicted by QA/QC procedures on duplicate samples)
then there is likely an unanticipated “hot spot” that needs to
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be better delineated. Even if the new sample va'lue is quite dif-
ferent from the discarded outlier, we should still make an effort
to understand why the original sample value was so unusual
since this may lead to useful insights about the appropriate
interpretation of the other data that we have decided to keep.

STATISTICAL M ETHODS FOR ERRATIC DATA

If outliers cannot be discarded for any of the reasons discussed
above, then they must be used with care. Many common statis-
tical tools are very sensitive to erratic high values. Any statistic
that involves some type of averaging — such as the mean, the
standard deviation and the correlation coefficient — will" be
strongly influenced by erratic high values. There s a large set

of statistical tools and procedures that are said to be “robust”

because they produce sensible results even in the presence of
erratic high values. Huber (1981) is a standard reference for
robust statistical methods; Hoaglin et al. (1983) provide an ex-

tensive discussion of robust methods for exploratory data anal-

ysis. Isaaks (1984) addresses the problem of mapping contam-
inant concentrations in the presence of erratic high values.

Before choosing more robust procedures, many of which are
considerably more complicated than the less robust traditional
alternatives, we can check to see if our remediation decisions
are affected by the inclusion or exclusion of outliers By run-
ning every relevant calculation first with the outliers included
and then with the outliers excluded, we can document the sen-
sitivity of our final decision to the presence of the outliers. It

is important in such sensitivity studies to keep in mind that it -

is not the actual statistics themselves that are of interest, but
their effect on our remediation decision. If a statistic changes
considerably when an outlier is included or excluded but the
remediation decision remains the same, then the outlier has no
real effect on the decision.

If sensitivity studies show that statistical tools and procedures
being used in the study do not lead to different remediation de-
cisions regardiess of whether outliers are included or excluded,
then there is no reason to explore the use of more robust alter-
natives. If such sensitivity studies do lead to different remedia-
tion decisions, then the outliers should remain in the data base
and more robust statistical procedures should be used.

%;?RECOM MENDED PRACTICE

1. Use probability plots, scatterplots and data postings to
identify outliers.

2. Evaluate each outlier in its spatial context and consider
whether the outlier requires any critical assumptions to be
modified.

3. If an outlier is due to human error, then correct it if possi-
ble. If the correct value cannot be established, then discard
the erroneous value and confirm that a similar error has
not affected other data.

4. If an outlier is not due to human error, then consider the
available qualitative information regarding the data prove-
nance and the site history and discard the outlier only if
there is.documentation to support the belief that the out-
lier observation is not part of the population under study.
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In all such cases, describe the population that the out-
lier does belong to and justify why this population is not
relevant according to the study objectives.

5. If an outlier is not due to human error and cannot be
assigned to a different population based on the available
qualitative information, then consider carefully the under-
lying assumptions about the distribution of the data val-
ues; if a re-examination of the available quantitative and
qualitative data suggests that the assumed distribution is
inappropriate then either choose a more appropriate dis-
tribution or adopt a non-parametric statistical approach.

6. If an outlier is not due to human error, and if the assumed
distribution is believed to be correct despite the outlier,
then two checks should be performed: )

(a) a check to see if the outlier value falls in the upper
1% of the assumed distribution; and

(b) a gap check to see if the difference between the out-
lier value and the next highest non-outlier value is
more than twice the value that the assumed distribu-
tion would predict.

If an outlier is inconsistent with the assumed distribution
for both of these tests, then discard it.

7. If an outlier cannot be discarded for any of the reasons
given above, then use it in the statistical analysis and
interpretation and, if necessary, choose robust statistical
procedures that can produce sensible results even with dis-
tributions that have erratic high values.

8. In all cases where an outlier value is discarded, document
the reason for this decision and give all relevant informa-
tion about the sample value that was discarded.

9. In all cases where an outlier value is discarded, a new
sample should be taken at a random location within 1 m
of the discarded outlier sample.
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THE GENERAL IDEA

At various stages in the study of a contaminated site, estimates
are required of the average value of the contaminant concen-
tration over a large area or volume. If the available samples
fairly represent the underlying population, then the arithmetic
average of the samples serves as an unbiased estimate of the
mean of the underlying population. Furthermore, the level of
uncertainty can easily be quantified. Unfortunately, the avail-
able samples are often clustered, with "hot spots” being pref-
erentially sampled once they are encountered. In such situa-
tions, the mean of the sample values is a biased estimate of
the true average since the more highly contaminated areas are
over-represented’in the sample data base.

This guidance document addresses the problem of estimating
the global mean and quantifying the uncertainty in this esti-
mate. It begins with the most tractable and convenient situa-
tion, in which the samples fairly represent the underlying pop-
ulation and can all be given equal weight. It then considers the
more common practical situation, where the available samples
are preferentially clustered in certain areas and do not fairly
represent the underlying distribution. It specifically discusses
two approaches to the problem of preferential clustering in the
sample locations: cell declustering and polygons of influence.
Though there are other ways of producing unbiased estimates
of the global mean from spatially clustered samples, these two

- methods are among the most common and will provide a good
indication of the sensitivity of the estimate of the global mean
to preferential sampling.

EQUALLY WEIGHTED AVERAGES

The most straightforward procedure for estimating the average
value over a large area or volume is to use as an estimate the
arithmetic average of the available samples:

Estimate of global mean = - Zv,
|—1

Vi,...,Vn are the n available sample values, each one of which
receives the same weight in the estimation of the global mean.
This equal weighting of the available samples is reasonable in
situations where any sample is as representative of the underly-
ing population as any other sample. As discussed in the docu-
ment entitled SAMPLING PLANS, however, the available samples
from a contaminated site are usually not equally representative
of the underlying population. The more common situation is
that the samples have been preferentially located in certain re-
gions, either based on visual observation or on high sample

e Thls gu:dance document is one of a series that outlmes lmportant basic statlsrlcal concepts and pracedures fhat are useful
] contammated sites studies. BC Environment recommends that these suggestions be followed where: applicable, but is
open to other technigues provided that these altemallves are technlcally sound Before a dlﬁerent methodology is adopted

- April 200t -1+~ ;- jf should be discussed with BC Environment. -

Later in this docu-
ment, we will present procedures for dealing with preferentially
clustered samples.

values from earlier sampling campaigns.

One situation in which the available samples can be regarded
as equally representative is where they are located on a regular
grid. Another is where the sample locations are randomly se-
lected with no thought being given to visual criteria o earlier
sample information. Though these situations are rare in most
contaminated site statistical applications, they may occur when
material has been stockpiled and samples are being collected to
allow an estimation of the average contaminant concentration
of the entire stockpile. :

QUANTIFYING UNCERTAINTY

In addition to estimating the mean of the underlying popula-
tion, we also often need to quantify the uncertainty on such
an estimate. The uncertainty on a global mean is usually ex-
pressed by a quantlty known as the ' standard error”, which is

calculated as follows:
s

n
where s is the standard deviation of the available samples and
n is the number of available samples. The standard error can
be thought of as the standard deviation of the distribution of
the underlying true global mean. Though there is only one
true global mean, we don't know what it is and our uncertainty
entails that there is some range of possible values; the standard
error describes the breadth of this range. If the standard error
is very high, then the range of possible values is very broad and
we don't know very much about the true underlying mean; this
can be caused either by having a large value of s (which means
that the available sample values are very erratic) or by having
a small value of n (which means that we have only a very few
samples). If sis small or if n is large, then the standard error will
be small, which signifies that the true underlying mean must -
fall within a narrow range of possible values.

Standard error of global mean = ogjobal mean =

For many classification problems, we need to make sure that the
average concentration of the material being classified is almost
certainly below a specified threshold. Rather than comparing
the arithmetic average of the sample values to the specified
threshold, we need to choose a pessimistically high estimate of
the underlying mean and make sure that even if the true aver-
age concentration of the material is as high as this pessimistic
estimate, it would still fall below the threshold. The pessimistic
estimate of the global mean needed for this kind of classification
problem is usually calculated by taking the arithmetic average
of the sample values and adding twice the standard error. As
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an example of this procedure, suppose that we are trying to
check whether the average arsenic concentration in a stockpile
is below 100 ug/g, and that we have 25 randomly selected sam-
ples whose arithmetic average is 87 ug/g and whose standard
deviation is 45 ug/g. In this example, the available samples
are all equally representative of the stockpile since all sample
locations were randomly selected, and the arithrretic average
serves as an unbiased estimate of the true mean concentra-
tion of the stockpile. The standard error on the global mean is
45++/25 = 9 ug/g A pessimistically high estimate of the mean
concentration of the stockpile would be 8742 x 9 = 105 ug/g.
For this particular example, there is enough uncertainty about
the global mean that it is not safe to assume the mean arsenic
concentration of the entire stockpile is below 100 ug/g even
though the average of the available samples is only 87 ug/g.

If we have more than 20 samples that are statistically inde-
pendent from one another, we can assume the probability dis-
tribution of the unknown global mean is a normal distribution.
Under this assumption, there is a 95% chance that the unknown
global mean will be within two standard errors of the arithmetic
average of the available data values. The pessimistic estimate
described in the previous paragraph is often referred to as the
“upper 95% confidence limit of the global mean".

BIAS CAUSED BY PREFERENTIAL SAMPLING

Figure 1 shows an example of mercury measurements taken
from a contaminated site in three sampling campaigns. The
first 7 samples were taken haphazardly throughout the site since
no coherent sampling plan had yet been developed. The second
group of 14 samples covers the area with a regular grid and the
third group of 12 samples provides additional detail in the areas
with the highest mercury concentrations.

0O Phase 1 sample

{ Ve A Phase 2 sample

\‘\0,8 e O Phase 3 sample
T /

N/ 0 _50__100m

Figure 1 Mercury samples from three sampling campaigns.

Table 1 shows how the mean of the sample values varies in .

each of the three sampling campaigns. In the initial group of
7 samples, the average mercury concentration was 4.57 ug/g.

in the second group of 14 samples, the average dropped to
1.59 ug/g. In the third group of 12 samples, the average in-
creased to 3.00 ug/g. It is clear that the preferential sampling
of the most highly contaminated regions has caused the higher
mercury values to be over-represented with the result that the
naive sample mean of 2.74 ug/g based on all 33 samples is likely
an overestimate of the actual average mercury concentration
over the entire site.

Table 1 Sample means by campaign.

Number Average Hg
of Samples  Concentration
Phase 1 7 457
Phase 2 14 1.59
Phase 3 12 3.00

WEIGHTED AVERAGES

Estimates of the global mean from spatially clustered data can
be produced by using a weighted average of the data values
rather than the equally-weighted average discussed earlier. A
weighted average can be written as

n
W eighted average = Zw; -V

i=1
" where vq,...,vy are the n available sample values, and where
wi,...,Wn are the corresponding weights that sum to 1.

The weight given to each sample reflects its importance to the
global mean. To mitigate the influence of preferential sam-
pling on an estimate of the global mean, we need to give lower
weights to the values from densely sampled areas and higher
weights to the values from sparsely sampled areas, Though this
general principle is used by many different declustering meth-
ods, they differ in the details of the calculations and in the
exact weight assigned to each sample.

Cell déclustering

One of the simplest procedures for choosing declustering
weights is to overlay a grid of cells, as shown in Figure 2, and
to make the weight of each sample inversely proportional to
the number of samples in the same cell. This is equivalent to
calculating the average value within each cell and then averag-
ing the cell averages. Figure 3 shows the cell averages for the
17 cells shown in Figure 2; the average of these cell averages,
1.97 ppm, serves as a declustered estimate of the global mean.

With cell decl ustering, the main stumbling block in practice is"
the choice of the cell size. In Figure 2, we chose to use 50x50 m
cells; but why didn't we choose 100x100 m, or 26x25 m,
or even 100x50 m? Each of these cell sizes would result in
a different estimate of the global mean. The recommended
practice with cell declustering is to choose a cell that matches
the spacing of the most regularly spaced subset of the samples.
In our example with the mercury contamination, the second
phase of samples was on a 50x50 m grid. If there is no quasi-

" regular subset of samples, then the common practice is to try

many different cell sizes, from very small ones to very large
ones, and.then select the one that minimizes the global mean.



GUIDANCE DOCUMENT NO.12-9: ESTIMATING A GLOBAL MEAN 3

The selection of the minimum estimate of the global mean is
predicated on the assumption that all of the clustered samples
* are in areas with high values. If this is not the case — if some of
the clustered samples are in areas with moderate a low values
— then it is difficult to justify any particular choice of cell size.
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Figure 2 50x50 m cells over the site.

@\8 ’ o} 50 100m

Figure 3 Average Hg concentration in each cell.

Further detail on the cell declustering method can be found
in lsaaks and Srivastava (1989); Deutsch (1989) provides a
computer program that implements this approach.

Polygons of influence

One of the oldest methods for spatial declustering is to give
each sample a weight that is proportional to the area of its

polygon of influence. Figure 4 shows the polygons of influence
for the mercury samples used in the earlier examples. The edges
of these polygons are the perpendicular bisectors between the
pairs of samples; all locations within any polygon are closer
to the central sample than to any other sample. In densely
sampled areas, the polygons will tend to be smaller and this
makes the area of the polygon of influence a natural candidate
for a declustering weight.
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Figure 4 Polygons of influence.
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Figure 5 Sample values for polygons of influence.

Figure 5 shows the sample values assigned to each of the poly-
gons from Figure 4. When these sample values are weighted
by the areas of their respective polygons, the resulting estimate
of the global mean is 1.98 ug/g. The remarkable agreement
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between this polygonal estimate of the global mean and the
cell declustering estimate of 1.97 ug/g obtained earlier is purely
fortuitous in this case. For most site studies, the estimates
obtained by the two approaches are more different.

With the polygonal apgoach, the main source of arbitrariness
is the decision about how to close the outer polygons that are
not naturally bounded by other sample values. In the example
shown in Figure 4, the property boundary was used to limit the
areal extent of the edge polygons. Unfortunately, in practice
the areal extent of the polygons often does not have a clearly
defined limit. When no such boundary suggests itself, the com-
mon practice is either to limit the size of the polygons to the
average spacing between the available samples or to the range
-of correlation as defined through geostatistical analysis of the
spatial variation. The guidance document entitled SAMPLING
PLANS provides a brief introduction to the range of correlation
and the analysis of spatial variation. :

Further detail on the use of polygons of influence can be found
in lsaaks and Srivastava (1989); Hayes and Koch (1984) provide
-a computer program that implements this approach.

UNCERTAINTY FOR WEIGHTED AVERAGES

When the global mean is estimated from a weighted average,
the uncertainty in the estimate can be quantified using the
following equation:

Oglobal mean = Sweighted X

where w; is the weight given to the i-th sample value, and
Sweighted 15 the standard deviation of the samples calculated
using the same set of weights:

n
Sweighted = Z Wi - (Vi — weighted mean)2
i=1

RECOM MENDED PRACTICE

1. When the available samples are located on a regular grid
or are the result of a formal randomization of sample lo-
cations, then the arithmetic average of the sample values
is an appropriate estimate of the underlying global mean.

2. When the avail able samples have been preferentially lo-
cated -in certain areas and not in others, then a weighted
average of the available sample values should be used to
estimate the underlying global mean.

3. Since the cell declustering and the polygonal method both
have a certain arbitrariness, the recommended practice is
to try both procedures rather than to rely exclusively on
one or the other. If both approaches result in an estimate
that is markedly different from the equally weighted sample
mean, then the spatial clustering of the data does have a
pronounced effect on sample statistics and this should be
taken into account whenever the study calls for an estimate
of a global statistic from sample data.

If the results of cell declustering and the polygonal method
are very similar, as in the mercury example shown in this
guidance document, then either estimate is acceptable. If
the two values are quite different, then the cell declustering
estimate should be accepted if a subset of the available
samples is on a quasi-regular grid. If no such regular grid
exists then the estimate from the polygons of influence is
preferable.

4. When ever the cell declustering approach has been adopted,
the report should contain a clear discussion of the choice
of cell size. Whenever the po lygonal method has been
adopted, the report should contain a clear discussion of
the choice of the boundary that limits the edge polygons.

REFERENCES AND FURTHER READING

in addition to the other guidance documents in this series, the
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THE GENERAL IDEA

Samples are necessary in all phases of a contaminated site study.
The money budgeted for analysis can be used more effectively if
discrete samples from homogeneous areas are grouped together
and combined into composite samples. For example, the sepa-
rate analysis of five discrete samples is going to be about five
times more costly than the analysis of a single composite sam-
ple created from.the five discrete samples. If the samples are
from an area that is thought to be uncontaminated, it is possi-
ble that the five separate analyses of the five discrete samples
will be virtually identical, with each one confirming what we al-
ready suspected — that there is no contamination. The single
analysis of a composite sample might be able to confirm the
lack of contamination for a much lower cost.

The problem with such an approach is that it may complicate
the task of classifying the material. For example, if we are try-
ing to determine whether the arsenic concentration of discrete
samples from a particular area ever exceeds 30 ug/g and if a
composite composed of five discrete samples has an average
concentration of 12 ug/g, then how do we know if all of the
five discrete samples would also have been below 30 ug/g had
they been analyzed individually? It is possible that all five dis-
crete samples had concentrations of about 12 ug/g, as shown
for the first composite in Table 1, and that there is no signif-
icant contamination in the area. It is also possible, however,
that some of the five samples had arsenic concentrations above
the 30 ug/g threshold while others had virtually no arsenic, as
shown by the second composite sample in Table 1.

Table 1 Arsenic concentrations (in ug/g).
Discrete Samples Composite Average

Compositel 11 9 12 11 17 12
Composite2 1 3 35 16 5 12

This document discusses the practice of combining discrete
samples into composites and provides some recommendations
on when it is appropriate; it also provides two guidelines for as-
sessing whether a composite analysis is compliant, i.e. whether
all the discrete values likely would fall below a specified thresh-
old. The first of these is a rather strict guideline that requires
only that we know the number of discretes that went into the
composite. The second is less strict but requires that we know
in advance the variability between discretes within the compos-
ite. Though this second approach requires additional analytical
work at the outset of the project, it may be more cost effective
in the long run.

There is another common usage of the term “composite” that

- Thls gu:dance document is one of a series that outlines lmportant bas:c statlstlcal concepts and procedures that are useful
in contaminated sites studies, BC Environment recommends:that these suggestions be followed where applicable, but is
open to other techniques provided that these altemat/ves are teohmcally sound Before a: dlfferent methodology is adopted
it should be discussed with BC Environment. "~ :

refers to an average of the analyses from contiguous samples,
usually from the same well or borehole. With this type of com-
positing, the individual samples have already been separately
analyzed and the goal of the compositing is either to reduce
the number of data that need to be handled, to reduce their
variability in order to facilitate statistical interpretation or to
standardize samples of varying core length to a common length.
This other type of compositing is less of a problem than the
compositing of discrete samples prior to analysis since the sep-
arate analyses are, in fact, still available and, if necessary, can
be used in statistical analysis. This guidance document does
not address this other type of compositing but focuses instead
on the compositing of discrete samples prior to analysis and on
the interpretation of the analysis of such a compaesite sample.

Other guidance documents in this series provide additicnal in-
formation on related issues. In particular, the document entitled
SAMPLING PLANS discusses the analysis of spatial variability and
also discusses issues related to the number of discrete samples
that will be needed to achieve a desired confidence in statistical
predictions.

15 COMPOSITING APPROPRIATE?

The primary goal of compositing in contaminated site studies
is to keep down the cost of analysis by analyzing fewer samples.
Unfortunately, for those who are planning the remediation and
for those responsible for ensuring that material has been classi-
fied correctly, fewer samples means less information. Planners
and regulators could be more confident of the success of the
remediation if analyses were available for every discrete sample.

The key to appropriate compositing is to ensure that the sam-
ples being combined together have similar concentrations, such
as those in the first composite in Table 1. When discrete sam-
ples that go into a composite have concentrations that differ
considerably, such as those in the second composite in Table 1,
the analysis of the resulting composite sample is of little value
to anyone. Neither remediation planners nor regulators can
make much use of it since the individual discrete samples may
represent entirely different levels of contamination that would
be classified in different regulatory categories. In such an event,
it is likely that the planners or regulators (or both) will eventu-
ally need to have separate analyses for the individual discrete
samples, at which point the whole exercise of compositing has
actually ended up costing more than the separate analyses of
the discretes would have cost in the first place.

- In situ characterization of the site is the best basis for delineat-

ing areas within which the material can be composited. The
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prediction of contaminant concentrations for unsampled mate-
rial will be more accurate and reliable for in sity material than
for material that has been disturbed or stockpiled. As long as
the material remains in situ, models of the spatial distribution
of a contaminant, such as contour maps, geostatistical simu-
lation, or the results of flow simulation, will be able to benefit
from historical, geological and hydrogeological information. If
the material is carefully tracked as it is excavated and stock-
piled, then in situ characterization will be useful in determining
the sample-to-sample variability in the stockpiles. If stockpiled
material cannot be traced to its in situ location, or if a care-
ful in situ characterization was never performed, then the only
way to assess the sample-to-sample variability in excavated and
stockpiled material is through extensive (and costly) sampling.

The fundamental motivation for compositing is to reduce the
money spent on analysis. We get the most fa our sampling
dollar when the samples we analyze are informative about all of
the unsampled material that we could not analyze. We w ould
be foolish to squander the opportunity to analyze and interpret
in situ samples. An in situ sample is much more likely to be
representative of its immediate surroundings than is a sample
taken from excavated or stockpiled material. With in situ sam-
ples and in situ characterization, we can make more reliable
predictions about the areas that will be sufficiently homoge-
neous to warrant compositing.

if we know that compositing is eventually going to be consid-
ered, and that in situ variability will become a key issue, we
should attempt to document the spatial variation of the in situ
material. In this series of guidance documents, there is one en-
titled SAMPLING PLANS that discusses methods for describing
and documenting the spatial variability of in situ material.

Since homogeneity is the key to the technical and economic
success of compositing, it is important to check on a regular
basis the discrete samples within a composite to ensure that
their values do not fluctuate too much. One in every ten com-
posites should be chosen at random to have all of its discrete
samples analyzed individually. As long as the information gath-
ered from these regular checks of the within-composite vari-
ability continues to confirm that composites are homogeneous,
then the compositing of samples can continue. If these regular
checks demonstrate that there is much more within-composite
variability than was originally assumed, then the compositing
should stop and the discrete samples should be analyzed indi-
vidually. Compositing should not resume until the reasons for

the lack of homogeneity are well understood and documented.

HOW TO USE COMPOSI;I'E ANALYSES

If composite homogeneity is not documented

If we are trying to decide whether any of the N individual dis-
crete sample values might be above a specified threshold, T,
" and if no information exists on the variability of individual dis-
crete sample values within a composite, then the only prudent
approach is to compare the analytical value from the compaosite
to T + N. This T <+ N rule is justified by the fact that if any
single discrete value in the composite is larger then T, then the
average of N equally-weighted discretes will be lager than T
+ N. When we observe a composite average that is less than
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T = N, we can be sure that none of the contributing discrete

samples had a value greater than T (as long as each of the

discrete samples contributed the same amount of material to
e composite sample).

This particular approach is very strict in the sense that it fre-
quently leads to false positive errors — cases in which we in-
correctly reject aﬁ?ﬁon—compliant when all of its
individual discretes were, in fact, compliant. The first compos-
ite shown in Table 1, for example, would have to be treated
as non-compliant under this rule. With five discrete samples
contributing to this composite, and with the threshold for the
arsenic concentration in any individual sample being 30 ug/g,
our composite would have to produce an analytical value of
6 ug/g or less before it would be considered as compliant ac-
cording to the T + N rule. ’

A further drawback of the T = N rule is that it discourages
compositing large numbers of discrete samples regardless of
their homogeneity. Once the number of discrete samples in the
composite reaches about ten, it becomes virtually impossible to
satisfy the T = N requirement. With many contaminants, the
thresholds that define contaminated material are low enough
that T = N rapidly approaches the detection limit of the best
available analytical procedures.

Documenting composite homogeneity

The strictness of the T = N rule stems from the fact that it does
not accommodate information about the variability (or lack of
it) in the N discrete values that go into each composite. If we
have gathered information on the actual variability of discrete
sample values within a composite, then we can use this in a
less strict rule.

To measure the variability of individual discrete sample values
within a composite, we need to compare several discrete sample
values to the analytical value of their corresponding composite.
If we have N composite samples, each one consisting of M
discrete samples, then we can calculate the variance of discrete
sample values within the same composite and the corresponding
standard deviation:

1 M 2
2 — - .
Swithin composite | — ﬁ Z [Dld - Cl]
i=1
1 N
2 — 2
Swithin = R,' Z Swithin composite i
i=1

Swithin = \/ s\%vithin

where Cy,...,Cy are the N composite analyses and D;; is the
analytical value of the j-th discrete sample in the i-th composite.

Tables 2 and 3 show an example of this calculation from six
composites, each of which contains five discrete samples. Ta-
ble 2 shows the 30 discrete analyses and their corresponding
composite analysis; note that the composite analysis may not
be the same as the mean of the corresponding discrete sam-
ple values. Table 3 shows the values of [D;j —.C;]? for all 30
discrete samples along with the within-composite variance for
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each of the five composites. The average within-composite
variance for these data is 7.33. The within-composite standard
deviation based on these data is therefore 2.71 ug/g.

Table 2 Discrete and composite arsenic values used to calculate
the within-composite standard deviation.

Discrete Sample Analyses  Composite Analysis

Compositel 12 7 10 12 16 11
Composite 2 10 13 15 12 15 13
Composite 3 22 16 15 16 18 18
Composite 4 7 10 2 5 10 7
Composite 5 17 9 16 12 11 12
Composite6 8 12 7 13 6 8

Table 3 Values of squared differences for the 30 discrete analyses
and their composite analysis in Table 2.

Squared Difference from.  Within-composite

Composite Analysis variance
Compositel 1 16 1 1 25 8.8
Composite 2 0 4 1 4 36
Composite 3 16 4 9 4 o] 6.6
Composite 4 0 9 25 4 9 9.4
Composite 5 25 9 0 1 8.8
Composite 6 0 4 1 25 4 6.8

Average within-composite variance = 7.33

This method requires at least 30 discrete samples in order to
produce a good estimate of the within-composite standard de-
viation. As presented above, the calculation assumes that there
are the same number of discrete samples in each composite. If
the number of discrete samples varies from composite to com-
posite, then the averaging of the N within-composite variances
should be weighted by the number of discrete samples within
each composite:

N
H 2. . . .
Z i - Swithin composite i

i=1
N
"
i=1

2 —
Swithin =

where n; is the number of discrete samples in the i-th composite.

The within-composite standard deviation has several uses. lts
first use is that it allows us to quantify the degree of homo-
geneity of the composites. A common yardstick for deciding
that a population is reasonably homogeneous is to check to see
if the coefficient of variation (CV) is bigger or smaller than 1.
The CV is the ratio of the standard deviation to the mean; a CV
less than 1 means that there are few erratic high values in the
population. As long as the value of syithin remains less than the
mean of the composited values, we have statistical support for
our assumption that the material is sufficiently homogeneous
to warrant compositing. For the data shown in Table 2, their
within-composite standard deviation was calculated earlier as
2.71 ug/g; with the average composite value being larger than

3

this, the coefficient of variation is certainly less than 1, and
compositing of the discrete samples is acceptable.

If composite homogeneity is documented

The second, and more important, use of syithin is that it permits
the development of a less strict rule regarding the interpretation
of the composite's analytical value. Once we have an accurate
estimate of syjshin, When we-are trying to decide if any of the
discrete sample values in a composite might have a concentra-
tion above a threshold T, then we can compare the analytical
value of the composite to the following quantity:

Composite compliance threshold = T — 3sy;ithin X [1 + ——1-]

VN

The idea behind this rule is that we can be reasonably sure that
no single discrete sample exceeds T if the mean of the discrete
samples (which is assumed to be the same as the analytical
value from the composite) is three standard deviations below
T. There is some uncertainty on the mean, however, since we
have only a few samples. The 1/+/N term in the square brackets
moves the composite compliance threshold a little bit lower
so that even when the fluctuation on the mean is taken into
account, we can still be reasonably sure that the threshdd T is
at least three standard deviations above the population mean.

Apart from the assumptions that the discrete samples con-
tribute the same amount of material to the composite and that
the discrete sample values are all uncorrelated with each other,
there are no other assumptions hidden in this approach. If we
are willing to be a little bolder, and assume that the discrete

. sample values follow a normal distribution (not a very defen-

sible assumption since contaminant concentrations for discrete
samples are usually quite skewed) then we can be more spe-
cific about the actual probability that a discrete sample value
exceeds T when the composite's analytical value is below the
compliance threshold provided by the formula. Under an as-
sumption of normality, this probability is less than 1%. There
is no particular need to assume normality, however; even with
no assumption about the distribution of the discrete samples,
this probability is never more than 10%. Further details on
the calculation of these probability values can be found in the
guidance documents entitled DISTRIBUTION MODELS and NON-
PARAMETRIC METHODS.

As an example of the use of this formula, consider the situation
from Table 1, where we are combining N=5 discrete samples in
our composites and we have a threshold of T=30 ug/g for the
arsenic concentration in a single sample. If we use the within-
composite standard deviation that we calculated earlier, sy;inin
= 2.71 ug/g, then the composite compliance threshold fa this
situation is: '

Composite compliance threshold = 30 — 3 x 2.71 x [1 + —\—}.g]
= 18.2 ug/g

If a composite has an analytical value less than 18.2 ug/g it is
very unlikely that any of its individual discrete sample values
would exceed 30 ug/g. All six of the composites listed in Table 2
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would count as compliant samples under this rule; under the 5. In every group of ten composites, randomly select one
T = N rule, all of them would be viewed as non-compliant. and, in addition to the analysis of the composite sample,
From the actual discrete values listed in Table 2, we can see also perform analyses on the individual discrete samples.
that none of the discrete samples is, in fact, above 30 ug/g. Use this information to monitor the homogeneity of the
Although the rule based on syjthin is less stringent than the T composites and to improve the estimate of the within-
= N rule, its false negative rate is still very low. _ composite standard deviation.

The key to this approach is the use of the actual within- 6. To decide if it is reasonable to suppose that the N discrete

composite standard deviation from composites whose discretes
have also been analyzed as an estimate of the within-composite
standard deviation for composites whose discretes have not
been individually analyzed. This assumes that the composites
from which the standard deviation is borrowed belong to the . . 1
same population as the composites to which the standard de- Composite compliance threshold = T—3 syithin- [1 + 7,'\,']
viation is being applied. W e need to make sure that ve are not :

mixing apples and oranges when we use a statistic calculated where syithin is the standard deviation of the discrete sam-
from one set of data as an estimate of a critical parameter for ples about their corresponding composite analysis and is
a different set of data. ‘ based on at leas hctual analyses of discrete samples
and the correspo composites.

samples within a composite all have a concentration less
than the threshold T, compare the composite's analytical
value to the following quantity: )

30

We should analyze all of the discrete samples for one in every ding

ten composites and use this information to monitor fluctua- 7. If there are less tha analyses of discrete samples and
tions in the statistics of the samples. If the composite mean the corresponding compebites, then compare the the com-
or standard deviation changes unexpectedly we should con- posite's analytical value to the following quantity to decide
sider whether the within-composite standard deviation based if it is reasonable to suppose that the N discrete samples
on historical information remains an accurate estimate of the within a composite all have a concentration less than the
within-composite standard deviation of the composites we are threshold T:

currently creating. As new discrete samples and their corre-

sponding composite analyses become available, we should also Composite compliance threshold = %

use this additional information to continuously update and im-
prove our estimate of the within-composite standard deviation.
REFERENCES AND FURTHER READING

in addition to the other guidance documents in this series, the
following reference provides useful supplementary materid on
how the EPA views the issue of compositing:

RECOMMENDED PRACTICE

1. If compositing is likely to be used on a project, use the
available discrete samples to establish the degree of in situ
spatial variability.

2. Use composite samplves only after in situ characterization Boomer, B.A., Verification of PcB Spill Cleanup by Sampling -
has established that all of the material within a particular and Analysis, EPA-560/5-85-026, United States Environ-
area belongs to the same regulatory category. If an in situ mental Protection Agency, 1985.

characterization has not been done, then collect enough
samples to document that the material has a coefficient
of variation less than 1.

3. When compositing samples:

(a) ‘maintain a clear record of the samples that contribute
to each composite; .

(b) homogenize each discrete sample before drawving the
sub-sample that will contribute to the composite;

(c) ensure that the individual discrete samples each can-
tribute the same amount of material to the compos-
ite; and

(d) archive a sufficient quantity of each sample to permit
the discrete samples to be analyzed in the event that
the composite is non-compliant.

4. From the first several composite samples, select a group
that collectively contain at least 30 discretes, analyze the
individual discrete samples as well as the composite sample
and calculate the standard deviation of the discrete sample
values about their respective composite values.



A gu:de for pro;ect managers, reviewers, data analysts and
mterpreters on statlstlcal quahty assurance and quahty control :

THE GENERAL IDEA

A statistical study is only as reliable as the data on which it
is based; if the fundamental data are called into question, the
entire study and its conclusions are also called into question.
It is important, therefore, to be able to document how reliable
the data are. Issues related to the reliability of data are often
grouped under the general heading of “quality assurance and
quality control” (QA/QC), a description that captures the idea
that data quality can not only be documented but can also be
controlled through appropriate practices and procedures.

Even with the most stringent and costly controls, data will
never be perfect: errors are inevitable as samples are collected,
prepared and analyzed. One goal of QA/QC is to quantify these
errors so that subsequent statistical analysis and interpretation
can take them into account. A second goal is to monitor the
errors so that spurious or biased data can be recognized and,
if possible, corrected. A third goal is to provide information
that can be used to improve sampling practices and analytical
procedures so that the impact of errors can be minimized.

This guidance document begins with a discussion of two con-
cepts: accuracy and precision. lt then presents statistical tools
that can be used to study the accuracy and precision of exist-
ing data, and also presents ideas on practices and procedures
that allow accuracy and precision to be monitored as the data
are being collected. It closes with a brief discussion of some
aspects of QA/QC that are often overlooked: the reliability of
location information, the reliability of qualitative information
and the reliability of computerized data bases.

ACCURACY AND PRECISION

Statistical QA/QC involves two separate but related concepts:
accuracy and precision. Figure 1 captures the difference be-
tween these two concepts. A sample is accurate if repeated
attempts are centered about the target value; it is precise if
repeated attempts are all close to one another.

0O

Precise but Accurate but  Neither accurate Both accurate
not accurate not precise nor precise and precise

Figure 1 Examples of accuracy and precision.

For the specific case of analytical values, where repeated mea-
surements of the same sample are possible (though somewhat
expensive), we can imagine an experiment in which we reana-

AR S R Thls guldance dacument is one of a series that outlmes lmportant bas:c statlstlcal concepts and procedures that are useful
. In contaminated sites studies. BC. Environment recommends that these suggestions be followed where. appl:cable, but is

: ' ‘open to other techniques provlded that these altematlves are technlcally sound Before a dlfferent methodology is adopted
it should be discussed with BC Environment. - -
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fyze the same material 100 times. Figure 2 shows how accuracy
and precision might manifest themselves on a histogram of the
repeat analyses; in this example, the target we are aiming for
is the true PCB concentration of 10 ug/g

(a) Precise but not accurate (b) Accurate but not precise
50 True value =10 ug/g 50 True value = 10 ug/g
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Figure 2 Histograms of 100 repeat analyses.

If the analytical procedure is inaccurate then the average of
repeat analyses will be different from the true value; the differ-
ence between the average of repeat analyses and the true value
is often called the bias. A histogram of repeat analyses from
an inaccurate procedure will not be centered about the true
value, as in Figures 2a) and 2¢). If the analytical procedure is
imprecise then repeat analyses will not be close to one another.
As precision improves, the spread of the histogram of repeat
analyses will decrease; Figures 2a) and 2¢) both show repeat
analyses that are inaccurate, but those in Figure 2a) are more
precise because they show less scatter. Precise analyses are
often referred to as “repeatable” because repeated analyses all
come close to the same value. As Figure 2a) shows, precise or
repeatable analyses are not necessarily accurate and may simply
be coming close to the same wrong value.

Though the example in Figure 2 is built on repeat analyses of
the same material, it should be noted that sampling errors are
not solely due to the analytical procedure. The earlier steps

of sample collection and sample preparation often contribute

more to the total error than the analytical procedure used in the
laboratory. Statistical QA/QC should attempt to document and
control the accuracy and precision of each step in the sampling
procedure, from the initial extraction of the material from the
ground to the final analytical value produced by the lab.
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Inaccuracy or bias in a sampling procedure is due to systematic
errors that cause the sample values to be generally too high or
too low. Imprecision, on the other hand, is a result of random
errors that do not have any systematic bias but that cause the
sample value to be different from the true value.

MISCLASSIFICATION

Though statistical QA/QC traditionally deals with accuracy, as
reflected in the mean value of repeat analyses, and precision,
as reflected in the variance of repeat analyses, these mas not
be the most critical statistical characteristics for remediation
planning. For much of the data collected from contaminated
sites, their purpose is to determine whether material is con-
taminated or not and our primary concern should be whether
the sample values are above or below some critical threshold.
An inaccurate or imprecise sampling procedure may have little
consequence if it does not cause contaminated material to-be
misclassified as uncontaminated or vice versa.

Though improvements in precision and accuracy usually go
hand-in-hand with improvements in classification, this is not
necessarily the case. Statistical QA/QC for contaminated site
studies should not focus exclusively on accuracy and precision
but should also address the issue of misclassification.

MONITORING AND CHECKING DATA QUALITY

Control charts for reference standards

An ideal approach to studying the reliability of an analytical
procedure is to reanalyze a prepared standard whose true value
is known. Such reference material can be specifically prepared
for a particular site; for many contaminants, reference material
is also available commercially. The advantage of site-specific
reference material is that its chemical and physical composition
is representative of the particular site; if an analytical procedure
is known to be sensitive to factors such as moisture or clay con-
tent, then site-specific reference material will provide the best
opportunity for calibrating the analytical procedure. The ad-
vantage of commercial standards is that their true value has
been well established; they have either gone through a battery
of different analytical procedures by different laboratories or
have been carefully prepared by spiking uncontaminated mate-
rial with known concentrations of the contaminant.

At regular intervals during the course of a project, the reference
material can be included for analysis along with other samples.
The resulting repeated analyses of the reference material can
then be plotted on a contrd chart that shows how the analytical
values of the reference material fluctuate with time.

Figure 3 shows a control chart for reference material that was
prepared for a site contaminated with mercury. With several
hundred samples being collected and analyzed at an on-site
laboratory over the space of a few weeks, it was decided that
the reference material should be checked daily, so the controi
chart in Figure 3 shows one analytical value per day (except
Sundays and some Saturdays). The dashed line on Figure 3
shows the accepted true value for the reference material, which
was prepared commercially and was designed to have a true
value of 20 ug/g.
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In addition to showing the accepted reference value, a control
chart should also.show the range of acceptable fluctuations
around this reference value. The limits for acceptable analytical
values can either be established through an initial batch of
repeat analyses or can be dictated by remedial design objectives.
For the control chart shown in Figure 3, the minimum and
maximum acceptable values are shown as dotted lines and are
based on design objectives that require the analytical values to
be within £10% of the true value. 4
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Figure 3 Example of a control chart.

The control chart in Figure 3 shows that the analytical pro-
cedure was generally acceptable in terms of its accuracy and
precision. For a short period of time towards the end of the
sampling exercise, the analyses became somewhat biased and
more erratic. In this particular case, it took several days to de-
termine that the cause of these unacceptable errors was opera-
tor error but, once identified, these errors were easily corrected.
All samples that were initially analyzed during the troublesome
period were reanalyzed to provide more reliable analytical val-
ues for remediation planning. ’

Though control charts are excellent for monitoring data quality,
they generally focus on the analytical errors that accumulate af-
ter a sample has been collected and prepared. The errors that
occur in the collection of the original sample material and the
preparation of the subsample that is finally analyzed are often
much greater than those that occur in the actual analysis of
the prepared material. Even though control charts may show

_acceptable accuracy and precision, a thorough QA/QC program

should also investigate errors that occur before the final pre-
pared subsample is delivered to the analytical device.

Scatterplots and summary statistics for paired analyses

Another method for checking the quality of analytical data is
to reanalyze several samples and to do a statistical study of the
paired analyses using scatterplots and a few summary statistics.
The statistical differences between the two sets of analyses will
reflect the cumulative effect of all the differences in the way that
the two sets of samples were collected, prepared and analyzed.
A few examples of some different types of sample pairs will
illustrate some of the different combinations of errors that such
a study might address:

e The paired values can be one lab’s reanalyses of the same
prepared material, in which case the statistical comparison
will reflect intra-laboratory analytical errors.

e The paired values can be reanalyses performed by differ-
ent laboratories of the same prepared’ material, in which
case the statistical comparison will reflect inter-laboratory
analytical errors between labs.

o The paired values can be reanalyses performed by the same
laboratory from different splits of the original sample ma-
terial, in which case the statistical comparison will reflect
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a combination of intra-laboratory analytical errors as well
as the errors due to sample preparation.

o The paired values can be analyses performed by the same
laboratory of two separate field samples that were very
closely spaced, in which case the statistical comparison
will reflect a combination of intra-laboratory analytical er-
rors, sample preparation errors, sample collection errors
and genuine short scale variations.

There are many ways that different samples, different splits of
the same sample, different laboratories and different analytical
techniques can be combined to provide pairs of experimental
values. The interpretation of the paired values that result from
such experiments is always easier if the QA/QC program is de-
signed to isolate as much as possible the different factors that
contribute to total sampling error.
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Figure 4 Comparison of analyses from different laboratories,

Figure 4 shows a scatterplot and some summary statistics for
the mercury analyses that two laboratories produced for sub-
samples that were created by splitting the sample material in
the field. This particular example reveals a systematic bias; the
paired values tend to plot slightly off the main diagonal and
the mean of the values reported by the two labs is noticeably
different. The scatterplot also reveals that one of the labs may
have a problem with inadvertent shifts of the decimal place;
there is a handful of points along the bottom of the plot that
would be more consistent if the Lab A value was lower by a
factor of 10 or the Lab B value was higher by a factor of 10.

The example in Figure 4 also shows the advantage of report-
ing both the linear and the rank correlation coefficients. The
strong skewness of the data makes the linear correlation coeffi-
cient quite sensitive to the extreme values; the rank correlation
coefficient, a more stable statistic, shows that the high linear
correlation coefficient in this example is due largely to the fact
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that the two labs were in very good agreement for the very
highest few pairs of sample values.

Figure 4 reports the percentage of samples for which the labs
disagreed on the classification for a remedial action threshold
of 20 ug/g. For 21 of the 78 pairs, the two labs d!sagreed on
whether the sample was contaminated; these 21 pairs plot in
the shaded regions of the scatterplot. The 19 pairs that plot in
the shaded fegion on the lower right were deemed contaminated
by Lab A but not by Lab B; the 2 pairs in the upper left were
deémed contaminated by Lab B but not by Lab A.

One of the shortcomings of a statistical analysis of paired ob-
servations is the ambiguity about which set of data is more
reliable. Though the statistical summary of the mercury data
shown in Figure 4 definitely reveals some problems, it is not
clear if the problems lie with the analyses from Lab A or those
from Lab B (or both). The best way to resolve such ambiguity
is with control charts that directly address the accuracy and
precision of each set of the paired sample values.

Another shortcoming of a statistical analysis of paired observa-
tions is that it may not reveal a systematic bias. Even if paired
analyses show a strong agreement, this does not necessarily
mean that both sets of values are accurate; it is possible that
both sets of values share a common systematic bias.

Blank samples

QA/QC studies of data from contaminated sites need to pay
particularly close attention to the possibilities of external con-
tamination and cross-contamination between samples. With
some of the contaminants being measured in trace quantities,
external contamination can create considerable confusion in re-
mediation planning if the materials used to collect, store and
transport the samples are introducing measurable quantities of
the contaminants of concern. Cross-contamination between
samples can also create difficulties for remediation planning if
material from an uncontaminated aréa becomes contaminated
by material from elsewhere on the site.

Material that-is known to be free of contamination can be
inserted in the sampling procedure to provide experimental
evidence of contamination. Such samples are usually called
“blanks” and can be used to monitor contamination at various
stages in the entire sampling procedure. The design of a pro-
gram involving blank samples needs to consider all of the possi-
ble sources of contamination and all of the pathways for cross-
contamination; without appropriate blank samples at each step,
it may be difficult to interpret a finding of contamination and to
develop an improved procedure that avoids the contamination.
For example, trace amounts of chromium can be introduced by

‘a variety of sources. Soil samples could be cross-contaminated

by the chromium from refractory bricks if they are stored in the
same area; chromium can also be introduced into samples by
various metallic instruments. If blank samples prepared in the
field reveal measurable increases in the chromium content, we
may not know exactly where the trace amounts of chromium
are coming from unless we have separate sets of blank samples
that allow us to distinguish chromium cross-contamination dur-

-ing storage at the site from external chromium contamination

introduced by metallic instruments in the lab.
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OTHER ASPECTS OF QA/QC

QA/QC should not focus exclusively on the errors that affect
the sample values. Statistical studies often depend on other
quantitative information, such as sample location, and often
also make use of qualitative information, such as descriptive
Jogs of soil lithology. These other types of information often call
for different QA/QC practices and procedures than those used
for the sample values; the guiding principles, however, remain
the same: we want to know the reliability of the information,
we want to detect and correct spurious values and we want to
minimize the impact of errors on the conclusions of our study.

Location information

~Sample location errors can be minimized through careful sur-
veying practices. Whenever possible, a standard reference co-
ordinate system, such as UTM coordinates, should be used to
record sample locations. If local coordinates are used, the
procedure for converting these to a standard reference system
should be documented. This can usually be accomplished by
documenting the UTM coordinates of the origin of the local grid
as well as any rotation between local north and UTM north.

If the only record of sample locations is a map, the sample
locations will become increasingly unreliable as they are tran-
scribed onto other maps. After several generations of copying
and remeasuring, the original and correct sample locations are
often so poorly known that the sample information is useless
for location remediation planning. To prevent such problems,
the coordinates of every sample location should be tabulated
so that others can refer directly to the exact coordinates rather
than trying to pick them off a copy of a map.

Qualitative information

Descriptive information, such as soil lithology, has a large com-
ponent of subjectivity; the colour and texture that one person
uses to describe a soil sample is often not the same as those
that another person would use. As soon as it becomes ap-
parent that descriptive information needs to be recorded fa a
particular site, we should standardize the collection of this in-
formation by preparing a form on which descriptive infarmation
can be recorded. When several people are collecting descrip-
tive information, there will be more coherence between their
descriptions if they are all given a standard set of reference ma-

terials, such as colour charts or grain size diagrams, that help

them to calibrate their subjective visual judgement.

A complete photographic log of the samples is a very useful
supplement for descriptive information and can be created us-
ing high quality film with relatively inexpensive photographic
equipment. Variations in lighting conditions can be monitored
and controlled by including a standard colour chart on every
photograph. The existence of such a photographic record is
often invaluable when old samples need to be relogged for de-
scriptive information that has not yet been recorded because
its importance was not initially recognized.

Mergi ng data bases from different sources

In large contaminated site studies, it is common to find that the
available data were gathered in different sampling campaigns by
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different organizations. When data from different sources are
merged into a single data base, it is important to maintain a
record of the original source for each piece of information. Long
after the data have been merged, a statistcal QA/QC study may
detect that certain data are less reliable than others.. Fa ex-
ample, one of the organizations responsible for sampling may
choose to use larger boreholes than those used by another orga-
nization that has also collected borehole samples; since the size
of the sample may affect the reliability of subsequent analyses,
it may eventually be important to be able to distinguish the
information generated by one organization from that generated
by another. Similar concerns arise with location information
when different organizations use different surveying practices,
and with qualitative information when different organizations
have different levels of expertise in recognizing and describing
geological and geotechnical properties of the soil.

RECOMMENDED PRACTICE

1. A statistical study of contaminated site data should be
accompanied by documentation of the reliability of any
data that are critical to the study's conclusions.

2. The entire sampling procedure, including the collection,
preparation and analysis of the sample, should not impart
any systematic bias. For large studies in which more than
100 samples will be collected and analyzed, control charts
should be used to monitor and control the accuracy and
precision of the analyses. A t-test should be used to deter-
mine whether the average of repeat analyses is significantly
different from the established reference value.

3. Sample precision should be monitored through control
charts and through paired analyses of separate splits of the
same sample material. For sample material that is split in
the field, the paired analyses of the separate sample mea-
surements should show a rank and linear correlation of
0.95 or greater for metallic and inorganic contaminants,
and 0.90 or greater for organic contaminants.

4. When everQA/QC reveals a significant systematic bias or an
unacceptably high imprecision, specific corrective action
should taken and the results documented.

- REFERENCES AND FURTHER READING

The guidance document entitled UNIVARIATE DESCRIPTION pro-
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THE GENERAL IDEA

The design of an appropriate sampling plan is a recurring con-
cern throughout the course of a contaminated site project. The
issue first arises when a site is suspected of being contaminated
and preliminary reconnaissance is required. At this early stage,
some thought needs to be given to samples that will provide
useful information for more detailed studies that may follow.
_ If the site is deemed to be contaminated, the sampling plan
will frequently resurface as an important issue: when the site
needs to be characterized so that a remediation strategy can be
developed, when global estimates of contaminated volumes are
needed for remediation planning, when "hot spots” are encoun-
tered during remediation and need to be delineated. At any of
these stages, a poorly designed sampling plan can cause the
remediation to be inefficient or, worse, ineffective. Sampling
plan issues arise even after the remediation, when samples are
needed to confirm whether or not the remediation was success-

ful. A poorly designed sampling plan at this final stage can’

cause residual contamination to go undetected.

This document presents information and advice on designing
an appropriate sampling plan. It begins with a discussion of
what it means for a sample to be fair and then discusses the
volume that a single sample can be assumed to represent. The
remaining sections discuss sampling plans according to the goal
of the study, and deal with statistical considerations that arise
in designing sampling plans for initial reconnaissance, for global
estimates, for local estimates and for detection of “hot spots”.

All of the guidance given in this document, including the var-
tous formulas for calculating the number of samples and their
spacing, assume that the the sample information is accurate
and precise. In addition to defining the number, location and
spacing of samples, a sample design should also identify QA/QC
procedures that will ensure the reliability and repeatability of
the sample information. These QA/QC procedures should not
focus solely on the analytical values, but should also address the
quality of the sample location information. Another document
in this series, STATISTICAL QA/QC, discusses the documentation
and monitoring of the reliability of sample information.

HOW FAIR ARE THE SAMPLES?

When we are designing a sampling plan, it often helps to think
of the sampling plan in terms of an exercise in democracy in
which we have to select samples that fairly represent some
larger population. The samples themselves should not be the
main focus of attention; they are interesting only insofar as they
provide insight into the much larger remainder of the population
that has not been directly sampled.

C T "open to other techniques prowded that these alternatives are technlcally sound Before a dlfferent methodology is adopted
2-ocoootoor o Cjt should be discussed with BC Environment, -

.......................................................

A chronic concern of statisticians is that sampling be fair in the
sense that every member of the larger population has the same

chance of being selected. If sampling is not fair then some
members of the population have a greater chance of being
selected than others; statistical studies based on such biased
samples often reach erroneous conclusions. One of the best
historical examples of an unfair sampling is the poll that was
conducted by the newspaper that earned a lasting place in the
photographic record of the 20th century with its “Dewey De-
feats Truman” banner headline. This embarassing proclamation
was based on a public opinion poll in which voters were ran-
domly selected from the phone book. Though this method of
sampling a population has now become conventional for many
public opinion polls, it was not a fair method in the 1940’s. At
that time, owning a telephone was enough of a sign of afflu-
ence that wealthier voters had a slightly higher chance of being
sampled than poorer voters. With the poll being inadvertently
stacked with wealthier voters, the preference of the wealthy far
Dewey, the Republican candidate, skewed the results enough
that the pollsters reached a very wrong conclusion.

For many contaminated sites, the earliest samples are not fair
since their selection is based on visual observation. A pre-
liminary reconnaissance is more likely to sample material that
looks “interesting” than material that is not visually distinc-
tive. Though such samples may be very useful for establish-
ing an understanding of the nature of the contamination, they
usually impart awkward biases to statistical studies that aim at
characterizing the entire site. For example, on a landfill site
contaminated with glazing sludge from the manufacturing of
ceramic products, visible layers of glazing sludge exposed in
trenches may be preferentially sampled during a preliminary re-
connaissance of the site since these layers are most likely to
confirm the severity of lead, zinc and cadmium contamination.
Later, when a remediation plan is being prepared for the entire
site, which includes many landfill materials other than glaz-
ing sludge, the preponderance of highly contaminated samples
from preliminary reconnaissance makes it difficult to develop an
accurate 3D model of the contamination throughout the site.
In this case, though the early samples may fairly represent the
contamination within layers of glazing sludge, they do not likely
fairly represent contamination in other layers.

Another example of unfair sampling is the siting of additional
samples near anomalously high sample values from earlier sam-
pling campaigns. As discussed later in this guidance document,
this targetting of suspected “hot spots” does provide valuable
information; nevertheless, it also compromises any statistical
method that assumes the underlying population has been fairly
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sampled. When additional samples have been preferentially lo-
cated in areas that are suspected of being highly contaminated,
sample statistics should not be used as estimates of the corre-
sponding parameters of the underlying population. The sample
mean, for example, is usually a biased estimate of the mean of
the underlying population if samples are preferentially clustered.

Dealing with preferential sampling

Samples are often collected from contaminated sites before any-
one has started thinking about statistical issues, and those who
are later responsible for statistical data analysis and interpre-
tation typically have to cope with an unfair sampling that is

preferentially biased towards certain regions. In such situations,

statistical studies that address the remediation of the entire site
should find some appropriate method for mitigating the effect
of preferential sampling.

One solution for dealing with samples that preferentially target

- certain regions is to separate the site into subpopulations. The
case described in the previous section, for example, might best
be handled by building a model of the locations of the layers of
glazing sludge. The many samples from these glazing sludge
layers can be used to model the spatial distribution of contami-
nants within these layers, while the spatial distribution in other
layers can be modelled using any samples from layers other than
those that were visually recognizable as glazing sludge.

It is not always possible to split a statistical study into sepa-
rate subpopulations, especially when the preferential sampling
is the result of successive infill samples in anomalously high
areas rather than the result of an intentional preference for
visually distinct material. In such situations, statistical pro-
cedures may have to accommodate the effects of preferential
sampling by assigning each sample a declustering weight. Sam-
ples from regions that have been densely sampled, are given low
declustering weights to reduce their influence, while those from
sparsely sampled regions are given higher declustering weights.
The guidance document entitled ESTIMATING A GLOBAL MEAN
discusses declustering and shows how declustering weights can
be used to develop more accurate estimates of the mean of the
underlying population from spatially clustered samples.

The least desirable way of dealing with preferential samples is
to ignore or discard them; it is always better to try to limit their
spatial influence, either by delineating the spatial extent of the
population to which they belong, or by assigning them a declus-
tering weight based on their proximity to neighbouring samples.
Though discarding samples is not a good final solution to the
problem of preferential sampling, it is often an expedient way
to check the sensitivity of a statistical procedure to clustered
sampling. If there is a concern that preferential sampling may
be leading to erroneous conclusions, the procedure can be re-
peated with a regulary spaced subset of the available samples.
If the conclusions based on all available samples are different
from those based on a regularly spaced subset, then the effect
of spatial clustering is severe enough to warrant specific atten-
tion. A subset that is more regulary spaced than the entire data
set can be selected by overlaying a rectangular grid over the site
and randomly choosing one sample from each rectangular cell;
the document entitled RANDOMIZATION provides guidance on
procedures for such a random subsampling.

-in all directions.
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WHAT VOLUME DOES A SAMPLE REPRESENT?

When samples are needed for local remediation planning, the
sampling plan should consider the “range of influence” of a
single sample. For spatially erratic contaminants, the range of
influence is short and an individual sample represents only a
small region in its immediately vicinity. For contaminants that
are very spatially continuous, the range of influence is longer
and an individual sample is representative of a larger region. If
the range of influence is short, detailed local remediation plan-

“ning will require more closely spaced samples than if the range

of influence is long. The design of an appropriate sampling
plan for detailed local remediation planning therefcre requires’
a good understanding of spatial variation.

The intuitive notion of the “range of influence” can be ex-
pressed quantitatively by the “range of correlation”, which is
the distance at which pairs of sample values are no longer corre-
lated. The range of correlation is usually determined by group-
ing pairs of samples according to their separation distance and
plotting the correlation coefficient between the sample pairs as
a function of the separation distance. Figure 1 shows such a
plot, which is usually called a “correlogram”, for a PCB con-
taminated site. In this example, the PCB concentrations have a
range of correlation of 50m in the N-S direction and 30m in the
E-W direction. Up to this distance, a single PCB analysis will

- have some correlation with the unsampled PCB concentrations

in its immediate vicinity. lsaaks and Srivastava (1989) present
a practical introdiiction to a variety of tools for analyzing and
interpreting the pattern of spatial variation.

(a) North-south direction (b) East-west direction
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Figure 1 N-§ and E-W correlograms of PCB concentration.

The example in Figure 1 shows one of the specific practical
benefits of statistically analyzing the spatial variation: it may
reveal that the sample spacing does not need to be the same
For many contaminated sites, the physical
and chemical processes that influence the spatial distribution
of the contamination are not isotropic — the co ntamination is
likely to be more continuous in certain directions than in others.
Without a study of spatial variation in different directions, we
are not likely to recognize the opportunity for an efficient sample
plan that takes advantage of the directional changes in the
spatial continuity of the contamination.

Like all statistical characteristics, the correlogram may change
locally; the range of correlation may not be the same through-
out the site. On any site where erratic "hot spots” are sus-
pected, we can check the possibility that high values have a
shorter range of influence by calculating separate correlograms
for high sample values and for low ones. Such information will
be very useful for planning an efficient strategy to deal with
any "hot spots” that may be encountered during remediaticn.
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STATISTICAL CONSIDERATiONS IN SAMPLING
Preliminary reconnaissance samples

When a site is first suspected of being contaminated, recon-
naissance is often performed to provide information on site his-
tory and usage. It is during this initial sampling that statisti-
cal rigour most frequently collides with other practical issues.
Many statisticians disdain the haphazard apgroach to sampling
that often characterizes reconnaissance, dismissing the samples
as "grab samples” or mere “specimens” whose selection bias
makes them of questionable value for statistical studies.

Unfortunately, preliminary site reconnaissance needs to address
issues that are pre-statistical in the sense that statistical studies
make little sense until these issues are resolved. For example,
we should not initiate a statistical study until we know what
we need to study; even without a statistically defensible sam-
pling plan, preliminary reconnaissance can establish which cen-
taminants exist in sufficiently high concentrations to warrant
remedial action. Even when the contaminants of concern are
already well known, a statistical study may be premature if the
relevant populations are poorly understood. Reconnaissance
can provide critical insights into the relevant statistical popu-
lations by gathering information on the physical and chemical
factors the affect the spatial distribution of each contaminant.

Site reconnaissance need not be constrained by statistical con-
cerns but should focus instead on establishing the contaminants
of concern and their physical and chemical controls. For con-
taminants that occur naturally, such as most metals, the initial
sampling of the site should also attend to the issue of establish-
_ ing the statistical characteristics of background concentrations.
By identifying and sampling material that should be uncontam-
inated, a site reconnaissance can document the distribution of
background concentrations, information that can be used in
subsequent- statistical studies that try to -split the data into
“natural” and “affected" subpopulations.

Even though statistical issues need not be paramount during
preliminary reconnaissance, subsequent statistical data analysis
and interpretation will find the reconnaissance samples more
useable if each sample is accompanied by documentation of the
reasons for its collection. This may be a description of the visual
appearance of the material, or may simply be a summary of
the information that led to the belief that a particular location
was contaminated. Reconnaissance samples will also be more
useable in later studies if their locations are accurately recorded.
If it is not possible at the time of the reconnaissance to survey
the sample locations, they should be flagged or marked in the
field so that they can be properly surveyed later.

Samples for global estimates

Once contamination on a site has been confirmed, the next sta-
tistical issues that arise usually pertain to global estimates, such
as the average concentration of a contaminant over the site,
or the overall proportion of the site that is contaminated. As
-discussed in ESTIMATING A GLOBAL MEAN, the uncertainty on
the estimate of the mean of the underlying population is related
to the number of samples used in the estimate. Uncertainty in
an estimate is usually expressed in terms of its relative error, as
a plus/minus interval around the estimate. The number of in-
dependent samples needed to ensure that the relative standard
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deviation on the estimate of the global mean is less than +R%
can be expressed in terms of the coefficient of variation of the
individual samples:

Number of samples = [100 X CV -+ R]2

As an example, if the available samples from a contaminated
site show that the cv of individual lead samples is 1.5, and if we
need a global estimate of the average lead concentration over
the entire site that has a relative standard deviation of +20%

‘or less, then the number of independent samples we require is:

Number of samples = [100 X 15+ .'ZO]2 ~ 56

This calculation assumes the samples to be independe nt: this is
rarely the case in contaminated site studies since there is usually
some 'spatial correlation in the contaminant concentrations. In
practice, the best we can do for a sampling grid that is intended
for global estimates is to use a regular grid whose origin has
been randomly selected.

Samples for local estimates

In addition to global estimates, statistical studies of contami-
nated sites also often call for local predictions. For example,
remediation planning may require a map that shows the bound-
ary between contaminated material that requires remediation
and uncontaminated material that may be left in situ. Such a
map is often constructed by contouring the available samples
and then designating the remediation limit to be the contour
line that corresponds to the remediation threshold.

Sampling plans for local estimation should take into.account the
range of correlation of the contaminant concentrations. For
every location at which we need a local estirhate, we should
have at least one sample within the range of correlation. For
any location where no samples fall within the range of correla-.
tion, local estimation will be fruitless since we do not have any
information that directly correlates (even weakly) with the un-
sampled (and unknown) concentration we are trying to predict.

Once the range of correlation has been studied and documented
through correlograms like the ones shown in Figure 1, this in-
formation can be used to design a sampling grid that will be
appropriate for local estimation. In the same way that the for-
mula given in the previous section allowed us to choose the
number of samples that would limit the relative error in global
estimates, .the following formula provides insight into the sam-

ple spacing needed to limit the relative error in point estimates:

Sample spacing = Range of correlation X [R -+ (100 X CV)]2

As with the corresponding equation given earlier, R is the rel-
ative error, expressed in percent and CV is the coefficient of
variation of the individual sample values. The range of correla-
tion is the distance at which the correlogram shows sample pairs
to be uncorrelated; as noted earlier, this distance may change
with direction. As an example of the use of this formula, sup-
pose that we are dealing with lead contamination that has a
CV of 1.2 and a range of correlation of 135 m: furthermore, we
would like each of our point estimates to have a relative error
of less than £:40%. The sample spacing should be

Sample spacing = 135 X [40 = (100 X 1.2)]2 X 12m

Though this formula provides a sample spacing that limits the
relative error for point estimates, it is rare that we depend on
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point estimates in remediation planning. In practice, we do not
segregate contaminated from uncontaminated material point by
point; the equipment used to implement the remediation strat-
egy limits the volume of material we can effectively segregate.
We are not interested in whether the contaminant concentra-
tion at a specific point exceeds the remedial action threshold;
instead, we usually need to know whether the average concen-
tration over a small area is above the threshold. An estimate
of the concentration at a single point is less certain than an
estimate of the average concentration over 'some larger area.
For this reason, the preceding formula gives a sample spacing
that is usually smaller than we actually need in practice.

The following formula provides a sample spacing that should
limit the relative error on estimates of the average concentration
over a small square whose side is B:

Sample spacing = Range of correlation X [R - (100 X CV)]:2 +0.75XxB

As an example of the use of this formula, let us reconsider the
previous problem, in which lead contamination had acv of 1.2
and a range of correlation of 135 m. As before, we would like
the relative error to be below £+40% but this relative error now
refers to estimates of the average lead concentration over a
10mx 10m square that represents the smallest amount of soil
that can be practically segregated as clean or contaminated.
For this situation, an appropriate sample spacing would be

Sample spacing = 135 X [40 <+ (100 X 1.2)]2 -+ 0.75 X 10 & 20m

This forrmula will give an appropriate sample spacing for sample
design problems in which the sample spacing is smaller than the
range of correlation but larger than the size of the minimum
volume of selective remediation. [f the spacing calculated by
this formula is larger than the range of correlation or smaller
than B, then the result may not be appropriate; Isaaks and Sri-
vastava (1989) present a more detailed discussion of estimation
error and provide more general formulas that can be used to
assist with the selection of an appropriate sample spacing.

Sampling for "hot spots”

Attempts to design a single sampling grid to delineate “hot
spots” usually lead to a sample spacing that is so tight that the
total number of samples becomes prohibitively costly and time
consuming. The range of correlation is rarely constant through-
out a contaminated site, but tends instead to be longer in areas
with moderate and low contaminant concentrations and shorter
in areas with high concentrations; similarly, the coefficient of
variation is rarely constant throughout a contaminated site. As
a result, the sample spacing needed to achieve a specified level
of confidence in local estimates will vary throughout the site,
with more samples usually being needed in anomalously high
areas and fewer samples in moderate and low areas. Unfortu-
nately, we usually can't take advantage of this fact in practice
because we do not know where the anomalously high areas
are located until we collect and analyze the samples. A prac-
tical and effective ‘way around this problem is to design the
sampling program so that the samples are collected in several
stages rather than in a single campaign. With a multi-stage
approach to sampling, the initial stage provides sample infor-
mation on a relatively coarse grid, and each successive stage
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adds infill or step-out samples near the locations of the high
sample values from earlier stages.

Another approach to identifying and delineating “hot spots”
is to use a less costly and more rapid analytical procedure,
such as X-ray flucrescence, to supplement the more costly and
time consuming chemical analyses. Rapid and cost-effective
analytical procedures are typically less reliable and can not be
used without a careful QA/QC program that constantly monitors
the reliability of the information they generate. If a rapid and
cost-effective analytical procedure has been p roperly calibrated
through statistical QA/QC, it can provide a dense sampling of ‘
the site that can then serve as the basis for selecting optimal
locations for more reliable (and costly) chemical samples.

RECOMMENDED PRA CTICE

1. Initial reconnaissance sampling may be based on visual in-
spection and should be designed to provide data on the
contaminants that exist and their maximum concentra-
tions. For any contaminant that requires remedial ac-
tion, the initial samples should document its physical and
chemical controls and, if the contaminant occurs natu-
rally, should also serve to establish the distribution of back-
ground concentrations. Though the initial sampling need
not be statistically based, a complete description of the
location of each sample and the rationale for its collection
should be compiled so that subsequent statistical analysis
can make appropriate use of the sample information.

2. For sampling plans that aim to provide information for
global estimates, the samples should fairly represent the
underlying population; this can be accomplished with a
regular grid whose origin has been randomized. The total

" number of samples should take into consideration the level
of confidence that global estimates will need to have to
meet the study objectives and this, in turn, requires that
the coefficient of variation be taken into account.

3. For sampling plans that aim to provide information for
local estimates, their design should take spatial variation
into account by ensuring that the spacing between samples
is smaller than the range of correlation. If closely spaced
samples are not already available from earlier sampling
campaigns, they should be added at this stage to provide
data for quantifying spatial variation.

4, For sampling plans that are intended to detect “hot spots”
or to check for residual contamination following a remedi-
ation exercise, a multi-stage sampling plan should used.

REFERENCES AND FURTHER READING

The guidance documents entitled ESTIMATING A GLOBAL MEAN
RANDOMIZATION and STATISTICAL QA/QC provide more infor-
mation on topics related to the sampling plan issues discussed
in this document. In addition to these, the following references
also provide useful supplementary material.

Cochran, W.G., Sampling Techniques, 3rd edition, John Wiley
& Sons, New York, 1977.

Isaaks, E.H. and Srivastava, R.M., An Introduction to Applied
Geostatistics, Oxford University Press, New York, 1989.
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THE GENERAL IDEA

During the remediation of most contaminated sites, the af-
fected material throughout the site eventually has to be clas-
sified into one of several contamination categories, usually ac-
cording to whether the contaminant concentrations are above
or below specified regulatory thresholds. In the system of classi-
fication used by the BC Ministry of the Environment, for exam-
ple, the most contaminated material is assigned to the “special
waste” and “waste” categories, and less contaminated material
is classified fram industrial quality to agricultural quality.
The criteria for these categories are defined by the BC Waste
Management Act, and the Contaminated Sites and Special .
Wa ste Regulations. When it comes time to assign contaminated
material to one of these categories, we very rarely know the
exact contaminant concentration of the material in question.

Instead, we base our classification on samples that represent '

only a tiny fraction of the total amount of material that needs
to be classified.

This guidance document discusses a variety of topics that all
relate to the issue of classification. It begins with a brief pre-
sentation of some of the terminology that is commonly used
" when discussing misclassification, and moves on to a discus-
sion of contouring, with a brief summary of the techniques that
are commonly used to interpolate between the available sample
data. It addresses the issue of quantifying the uncertainty on
local estimates and presents a procedure for developing maps

that directly show the probability of encountering contamina-

tion rather than showing estimates of the contaminant concen-
tration. The volume—variance effect is then discussed, almng
with the related issue of selectivity and the concept of the vol-
ume of selective remediation.

This document focuses on the issue of classification of in situ
material based on in situ samples. The document entitled
STOCKPILES discusses classification of material that has already
been excavated and is awaiting classification in stockpiles. For
some small sites, the affected material does not need to be lo-
cally segregated into different categories. For such situations,
where all the material on the site is assigned to a single category,
the reader should consult the documents entitled STOCKPILES
and ESTIMATING A GLOBAL MEAN.

'MISCLASSIFICATION

Whenever we attempt to classify material as being above o
below some specified threshold, there are two kinds of errors
that may occur. The first, which is often called a "false neg-
ative error”, occurs when we mistakenly classify material that
is actually above the threshold as being below the threshold.
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The second, which is often called a “false positive error”, oc-
curs when we mistakenly classify material that is actually below
threshold as being above the threshold.

For the remediation of contaminated sites, where classifica-
tion is usually accomplished by comparing bcal estimates of
the contaminant concentration to some regulatory threshold, a
false positive error results in the remediation of material that
did not, in fact, have to be remediated; a false negative error
results in the failure to remediate material that should, in fact,
have been remediated. These two types of errors have different

_impacts. False positive errors cost us the money that it requires
" to excavate and treat soil that could have been left unexcavated

and untreated; residual contamination that results from false
negative errors has the potential for damagmg human health
and the environment.

Though remediation should, ideally, minimize both types of
misclassification, it is usually difficult to minimize both simul-
taneously. Decreases in the probability of a false negative error
usually entail increases in the probability of a false positive er-
or. Damage to human health and the environment is usually
regarded as a much higher cost than the money spent on ad-

_ditional remediation. As a result, the focus of most statistical

guidance on classification is to keep the false negative rate be-
low some acceptable minimum.

CONTOURING

The most common approach to classification is to use the avail-
able sample data to contour or interpolate the contaminant
concentrations into areas that have not been directly sampled .
Figure 1 shows lead data from a site affected by airborne con-
tamination from a lead smelter located roughly in the center of
the map area. Using these data, a contour map, such as the
one shown in Figure 2 can be constructed and used as the basis
for classification. For this particular site, the target threshold
for remediation was 500 ug/g, the first of the thicker contour
lines shown in Figure 2.

Contouring is not a unique exercise: there are many different
algorithms that can interpolate sample data into unsampled a-

eas. The contour map shown in Figure 2 was created using a

geostatistical procedure known as “kriging”, which uses statisti-
cal information on the pattern of spatial continuity to calculate
appropriate weights for the nearby samples in the vicinity of any
point at which we need a local estimate. If there are enough
samples on which to base an analysis of spatial continuity, as
described in SAMPLING PLANS, then kriging will usually produce
an excellent interpolation of the available data.
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Figure 1 Lead sample data in the vicinity of a smelter.
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Figure 2 A kriged contour map of the lead data in Figure 1.

Other contour methods that -are widely available in com-
mercial software packages include the “inverse squared dis-
tance" method and “spline” or “minimum tension” interpola-
tion. With an inverse distance procedure, each sample is given
a weight that is inversely proportional to the squared distance
from that sample location to the location of the point at which

we need a local estimate. The “spline” or "minimum tension” -

approach to interpolation finds a surface that passes through
all of the available sample data values and that has variations
that are as smooth and gentle as possible.
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Isaaks and Srivastava (1989) provide a practical introduction
to kriging and to some of the more traditional and simpler
alternatives, such as the inverse squared distance approach.

QUANTIFYING UNCERTAINTY

Whenever we make an estimate, regardless of the interpolation
procedure we choose, one of the few things that we know about
our estimate is that it is very likely wrong — we would be
unimaginably lucky to hit the nail right on the head and predict
the exact value of the unknown concentration. Since error is
inevitable in any estimation procedure, our classification should -
not be based merely on estimated concentrations, but should
also try to take into account the uncertainty on these estimates.
In the same way that we consider a pessimistically high estimate
of the global mean when we classify stockpiled material {see the
document entitled STOCKPILES), so too should we consider the
effect of uncertainty on any local estimates that we calculate.

Geostatistics provides one approach to incorporating estimation
uncertainty into a classification procedure. The geostatistical

. interpolation known as kriging produces, along with an estimate

of the concentration, a quantity called the “estimation vari-
ance” that is often used to build confidence intervals around
local estimates. Unfortunately, this procedure assumes that
the distribution of error is normal, an assumption that is rarely
Jjustified when the underlying population is skewed (as are the
contaminant concentrations for most contaminated sites). Fur-
thermore, the traditional calculation of the estimation variance
does not take into account the sample data values themselves,
but considers only their location. In many instances, the un-
certainty in our predictions is linked as much to the actual data
values as to their location, and the fact that the estimation vari-
ance does not depend on the data values makes it inappropriate
as a measure of local uncertainty in such situations.

Probability maps

Geostatistics also offers an alternate method for quantifying
uncertainty, a procedure known as “indicator kriging” that re-
sults in a map that directly displays the probability that the
contaminant concentration exceeds a specified threshold.

Figure 3 shows the 50 ug/g "indicators” of the lead data shown
earlier in Figure 1. These indicators are simply 0's and 1's that
record whether each individual sample is above or below the
500 ug/g threshold. At any location where the lead concentra-
tion is known to be below 500, the corresponding indicator is
0, and at any location where the lead concentration is known
to be above 500, the corresponding indicator is 1.

Figure 4 shows a kriged contour map of these indicators. By
interpolating between a set of 0's and 1's, we end up with a map
of intermediate values between 0 and 1; this contour map can
be interpreted directly as a probability map. For example, in.
the region immediately north of the smelter, where the contour
lines show values above 0.8, we can interpret this as a 80%
probability that the contamination in this area is above the
500 ug/g threshold. Similarly, in the southern third of the map
area, where the interpolated values drop below 0.1, there is
less than a 10% chance of encountering lead contamination in

excess of 500 ug/g.
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Figure 3 500 ug/g indicators for the sample data in Figure 1.
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Figure 4 A probability map based on indicator data in Figure 3.

The reason that interpolated indicators can be viewed as proba-
bilities is that individual indicators are themselves probabilities.
In Figure 3, those locations where the indicator is 0 are locations
where the chance of encountering lead in excess of 500 ug/g
is 0. Similarly, those locations where the indicator is 1 are lo-
cations where the probability of encountering contamination in
excess of 500 ug/g is 1, or certainty. With the indicator data

being local prcbabilities,an interpolation of these data leads to.

an estimation of the probability of encountering contamination
in excess of the threshold used to define the indicators.

3

Though the use of indicators was first presented in a geosta-
tistical setting, with kriging as the interpolation procedure, the
same approach can also be used with the more traditional and
simpler interpolation procedures such as inverse squared dis-
tance or splines,

THE VOLUM E-VARIANCE EFFECT

A histogram of contaminant concentrations for very small vol-
umes, such as those typically collected by a split-spoon sam-
pling device, will show a greater spread and more skewness than
histograms of the same contaminant concentration measured
on larger volumes, such as truckloads. The tendency for val-
ues based on larger volumes to be less variable is often called
the “volume-variance” effect or the “support” effect ("suppert”
being the word that statisticians often use for the size and ge-
ometry of a sample). This support effect is due to the fact
that we are less likely to observe extreme high or low values in
larger volumes of material since there is more opportunity for
mixing high and low values together. The gradual disappear-
ance of the extreme values causes the spread of the distribution
to decrease and the symmetry of the distribution to increase.

The support effect has important implications for making pre-
dictions about remediable volumes. The problem in most con-
taminated site studies is that the remediable volume is quite
different from the volume of the available samples. With the
available samples coming from a population that is based on
small volumes and is highly variable, and the remediation plan
calling for estimates for a different population that is based
on much larger volumes that should be much less variable, we
have to be careful about how we use the sample information
to make predictions. Parker (1979) and Isaaks and Srivastava
(1989) provide an overview of the volume-variance problem, on
its implications and on how to deal with it.

THE VOLUME OF SELECTIVE REM EDIA'ION

When we say that the goal of our classification is to ca-
rectly identify “all material for which the lead contamination
exceeds 500 ug/g", what exactly does this mean? By using a
concentration-based criterion, such a statement carries some
implicit assumption about the volume; without a volume of
material, the concept of a concentration would have no mean-
ing. What is the volume at which the remediation is intended
to succeed? Do we clean up every spoonful of material whose -
lead concentration exceeds 500 ug/g? Or do we clean up every
shovelful whose lead concentration exceeds 500 ug/g? Or does
the statement pertain to entire truckloads? Or to even larger
volumes? If we intend to go after every spoonful of material in
excess of 500 ug/g then we'll have to do a lot of sampling or
excavate virtually all of the soil as contaminated (or both). If
we intend only that the remediation clean up truckloal sized
volumes, then fewer samples will be required and less sal will

_probably need to be excavated.

Without co nsensus on the volume to whth a regulatory thresh-
old applies, detailed remediation planning is usually premature,
If the engineering plan is designed to correctly classify large
truckloads of material while the regulatory agency intends that
much smaller volumes be correctly classified, then the reme-
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diation, even if successful according to those who designed it,
may not satisfy the regulatory agency. This is typically the case
when remediation with large equipment is thought to be com-
plete, only to discover that verification samples still encounter
residual contamination. Even if the original remediation did,
in fact, remove all contaminated material at the scale of large
trucks and no entire truckload of contamined soil remains on
the site, it is still possible that small surface samples will en-
counter contamination in excess of the regulatory threshold.

The “volume of selective remediation”, or VSR, is the small-
est volume of material that the remediation exercise intends to
segregate into one category or another. When deciding what
the VSR should be, the first consideration should be the basis
for the regulatory thresholds. The adverse effects of a particu-
lar contaminant often depend on a variety of factors, including
the exposure pathway, the chemical form of the contaminant
and its physical form. The selection of a target threshold for
a remediation should address the minimum volume for which
the adverse effects can manifest themselves. For example, with
lead contamination in the soil in a residential area, the primary
" focus of the remediation may be to minimize the risk of a child
picking up a handful of dirt and eating it. For this situation,
the VSR is usually considered to be very small, about a hand-
ful of dirt. ~ As another example, the most adverse effect of
mercury contamination in marine sediments may be the inges-
tion of mercury by bottom-feeding organisms that eventually
become food themselves for larger aquatic life and, eventually,
for humans. For this situation, the VSR may be the area over
which a bottom-feeder is likely to browse in its lifetime.

In addition to considering the adverse effects of the various
contaminants, the selection of an appropriate VSR will often
also take into account the practical realities of the remediation
exercise. Even though we would like to segregate each and
every handful of lead contaminated soil, there is no equipment
that can economically achieve such a fine level of selectivity. If
the smallest loaders we can use have 3 m> buckets, the VSR
might reflect this minimum loader size. '

The VSR we achieve in actual practice may be much larger than
the intended level of selectivity if we do not address the issue
of selectivity in all of the different aspects of the remediation
and verification design. For example, if the remediation plan is
to excavate the upper one metre of soil wherever the available
samples suggest contamination, and if the samples are spaced
at 10 m, then the minimum volume that we actually end up
segregating is roughly 10x10x1 = 100 m3 regardless of how
small our equipment might be. ‘

The volume of selective remediation and probability maps

When using a probability map, such as the one shown earlier in
Figure 4, as the basis for classification, it should be recognized
that the probabilities being shown on this type of map refer to
the volume of the samples used to define the 0/1 indicators. For
example, in areas where the probability map n Figure 4 shows a
50% probability of encountering contamination, single samples
from these areas will have a 50% chance of being contaminated.
This does not mean that there is a 50% chance that truckloads
of material from the same areas will be contaminated.

» The goal of a classification
that there is a less than 5%
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The selection of an appropriate probability threshold for clas-
sification depends on the relative concen trations of the con-
taminated and uncontaminated material For the lead example
shown in Figure 4, the contaminated samples above 500 ug/g
have an average lead concentration of 1850 ug/g, while the
uncontaminated samples below 500 ug/g have an average lead
concentration of 158 ug/g. With these relative contaminant
concentrations, any area that has even a 20% chance of being
contaminated will likely have VSRs whose average contaminant
concentration exceeds 500 ug/g. The 0.2 contour line from
the probability map in Figure 4 is therefore a reasonable basis
on which to classify material as contaminated or not. Regions
inside this 0.2 contour line have a good chance of contain-
ing VSRs whose average contaminant concentration is above
500 ug/g and which should, therefore, be classified as being
above the threshold even if individual samples in these areas
show lead concentrations less than the 500 ug/g threshold.

RECOMMENDED PRACTICE

1. Classification should be based on interpolation of in situ
sample data and on the uncertainty in these estimates.

2. When affected material is being classified, the classifica-
tion procedure should recognize that the regulatory thresh-
old usually pertains to a volume of material that is differ-
ent from the volume of material that is typically sampled.
The “volume of selective remediation” should be explic-
itly stated during the design of an appropriate remediation
strategy. The entire remediation strategy, including equip-
ment selection and the sampling plan that will be used for
local refinement of preliminary excavation limits, should
be designed so that material can be effectively segregated
at the intended level of selectivity.

ercise should be to ensure

ance of making a false
negative error on a volume of nyaterial equal in size to the
intended volume of selective remediation. This goal can be
met with the use of probability maps and the selection of
an appropriate probability threshold based on the relative
contaminant concentrations of material above and below
the threshold of interest.
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THE GENERAL IDEA

During the remediation of contaminated sites, the affected ma-
terial is not always sampled and classified in situ; occasionally
it is first stockpiled and then classified on the basis of samples
taken directly from the stockpiles. Though this is generally not
a good practice, it may be inevitable, unfortunately, when the
logistics of the remediation require material to be excavated
before chemical analyses are available. This guidance docu-
ment addresses the issue of stockpiling and discusses why it is
regarded as an inefficient and possibly ineffective approach to
remediation. It also provides guidance on sampling stockpiles
and on using these samples to classify the material.

Many of the issues raised in this guidance document are also
discussed in other documents in this series. The reader should
also read the documents entitled ESTIMATING A GLOBAL MEAN,
COMPOSITE SAMPLES, CLASSIFICATION, and DESIGNING A SAM-
PLING PLAN, each of which contains information that is relevant
to the issues discussed in this guidance document.

DRAWBACKS_OF STOCKPILING
L

Loss of spatial context

The most effective and efficient approach to remediation is to
use in situ samples, along with qualitative information about
the site history and usage, to prepare maps or three dimen-
sional models of the contamination as it exists in situ. Once
material has been excavated and stockpiled, it usually has lost
its spatial context and much of the information about site his-
tory and usage loses its value. For example, it may become
apparent during the remediation of a site that the contamina-
tion has been dispersed along old and leaking waste-water lines
that run underneath several buildings on the site. This indght
could be used to refine models of in situ contamination so that
the most contaminated material immediately adjacent to the
old waste-water lines can be segregated from the less contami-
nated material on the site. If the affected soil has already been
stockpiled, however, then we have likely mixed highly contam-
inated material with weakly contaminated material and have
lost the opportunity to effectively segregate the affected soil
into appropriate categories.,

Even in studies where the relevant physical and chemical con-
trols are understood, the remediation usually encounters un-
expected “hot spots”. When these are encountered in situ,
it is possible through further sampling to delineate their lat-
eral extent and-to effectively segregate the “hot spot” in the
appropriate contamination category. When a stockpile sample
encounters an anomalously high analytical value, it is virtually

- A gutde for data analysts, pro;ect managers and revnewers
on: statlstlcal issues related to stockplled materlal

This gu:danc_e document is one qf a series !hat autlln_es-lmp}ortant baslc stalistlcal concepts and.pracedures that ‘are useful
in contaminated sites studies. BC Environment recommends that these suggestions be followed where appl:cable, but is
" open to other techniques provided that these altematlves are techmcally sound Befare a different methodalogy is adopted

it should be discussed with BC Environment. = -

...................................................................

impossible to tell where the rest of the "hot spot” has ended up;
often, the only environmentally prudent approach is to condemn
the entire stockpile as belonging to the contamination category
of the single anomalous value.

Whether or not the stockpile samples encounter anomalously
high values, the loss of spatial context reduces the confidence of
any estimates we might need to make with the available sample
data. Closely spaced in situ samples usually show more similar-
ity in their contaminant concentrations than do closely spaced
stockpile samples; the acts of excavating and stockpiling tend
to destructure the in situ pattern of spatial continuity. The con-
sequence of this for statistical studies of contaminated sites is
that our predictions of the contaminant concentrations in ma-
terial that we have not directly sampled will be more reliable
when we use in situ samples to estimate nearby in situ concen-
trations than when we use samples from a stockpile to estimate
contaminant concentrations elsewhere in the same stockpile.

Dilution

A second drawback of stockpiling is that it can result in highly
contaminated soil being diluted with uncontaminated (or less
contaminated) soil. If the relative proportion of the highly con-
taminated soil is low, then this dilution may cause material

.that should have been classified as contaminated to pass as

uncontaminated. Since the adverse effects of many contami-
nants are directly related to the total mass or quantity of the
contaminant, rather than to its concentration, such dilution of
contaminated material is not an appropriate practice.

Difficulty of sampling

One of the other major shortcomings of stockplhng is that it is
very difficult to obtain samples that fairly represent the entire
stockpile. As discussed in SAMPLING PLANS, one of the impor-
tant principles in sampling is that every member of the larger
population has the same chance of being selected. Regrettably,
stockpile samples are rarely fair; stockpile samples are com-
monly “grab” samples that are collected where the material is
most accessible: usually from the surface of the pile, and often
near the base. If the stockpile was homogeneous; then sur-
face samples might be an acceptable basis for determining the
average concentration of the entire pile. Stockpiles are rarely
homogeneous, however, and there are a variety of reasons why

surface samples might be badly biased.

When excavated material is dumped onto a pile, it inevitably
segregates according to grain size as it cascades down the slope
of the existing pile. If the contaminants are preferentially con-
centrated in the finer grain sizes — the silts and fine grained
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sands — then the m aterial that accumulates along the toe
of the pile will tend to show higher concentrations than the
material that accumulates along the crest.
contamination is concentrated in the coarser fractions — the
gravels and coarse sands — then the concentrations will tend
to be lower at the toe and higher along the crest. Stockpiled
material also segregates according to lithology; sticky lumps of
clayey material, for example, will tend to end up in different
parts of the stockpile than will loose dry soil.

Another reason that surface samples may be badly biased is
that weathering often affects the contaminant concentrations
on the exposed surface of a stockpile. With heavy metal con-
taminants, for example, rainwater may leach contaminants from
the surface deeper into the pile. Similar problems arise when
the contaminants are volatile organic compounds; the surface
of the pile will often show considerably lower concentrations
than the interior core since the surface material has had greater
exposure to the air for a longer period of time.

STOCKPILE DESIGN

Given the various drawbacks of stockpiles as an intermediary
step in remediation, the following principles should be used
when designing stockpiles: '

1. Wherever possible, stockpiling should always be preceded
by in situ sampling and mapping of the contaminant con-
centrations. This in situ information should be used to
identify areas that are sufficiently homogeneous that the
mixing of material from different contamination categories
is avoided.

2. To minimize the possibility of misclassification of contam-

inated material, the size of stockpiles must be kept rela--

" tively small, especially when the material is in the vicinity
of any very highly contaminated in situ samples. Stock-
piles should never exceed 50 m® when any of the stockpiled
material is within 50 m of an in situ sample in which the
contamination exceeds the concentration for BC Enviren-
ment's “special waste” category. In no situation should
stockpiles ever exceed 250 mS.

STOCKPILE SAMPLING-

Though proper stockpile sampling & difficult, it is not impossi-
ble. Three appropriate methods for sampling a stockpile are:

1. If the stockpile is small, create a random sub-sample by
shovelling the pile into two separate piles, with one shov-
elful in every N shovels being randomly selected to go into
the smaller pile that will form the sub-sample. With this
approach, the selection of N depends on the size of sub-
sample we can manage. If we need a small sub-sample, this
random splitting of the entire pile may have to be repeated
two or more times to obtain an appropriate sub-sample.

2. If the stockpile is too large for the previous procedure to be
pragmatic, then collect samples at a regular spacing from
vertical borings that complietely penetrate the pile. These
vertical borings should either be located randomly on the
pile or should be located on a regular grid that covers

Similarly, if the .
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the areal extent of the pile. In this approach, if the dis-
crete samples from a single vertical boring are composited
to produce a single analysis for each vertical boring, then
the calculation of the average concentration in the entire
stockpile should recognize that the borings have different
lengths. ESTIMATING A GLOBAL MEAN describes how to ac-
commodate different weights in the estimation of a global
mean and in the quantification of the uncertainty on such
an estimate.

3. As the stockpile is being created, whether by a shovel, by
a loader, or by a series of dumped truckloads, the ma-
terial can be randomly sampled as it accumulates. This
approach to stockpile sampling ensures that some samples
from the core of the ultimate stockpile will be available
when it comes time to classify the material. As an ex-
ample, if we are building a 200 m® stockpile by dumping
10 m3 truckloads, then we could choose a random sam-
ple from each truckload immediately before it is durrped.
By the time the entire stockpile has been created, we will
have twenty samples that do a much better job of fairly
representing the entire pile than any twénty samples we
could collect from the surface of the ultimate pile.

Regardless of the method used to collect stockpile samples, the
sampling program should be accompanied by a QA/QC program
that monitors and documents the reliability and repeatibility of
the sample analyses.

CLASSIFICATION OF STOCKPILED M ATERIAL

When an entire stockpile is being classified, there are two ques-
tions that need to be considered:

1. Is the average contaminant concentration in the entire pile
above or below the classification threshold?.

2. ls the pile sufficiently homogeneous that classification on
the estimated mean is appropriate? ‘

Classification based on the global mean

The most straightforward check of whether the stockpile should
be classified as being above or below any specific threshold is
simply to check the mean of the available samples. If the sample

“mean is above the threshold, then the entire stockpile must be

classified as being above the same threshold.

Even if the sample mean is lower than the target threshold, this
does not ensure that the average concentration in the entire pile
is below the threshoid. The arithmetic average of the available
samples is only an estimate of the true (but unknown) gverage -
concentration of the entire stockpile. As discussed in ESTIMAT-

ING A GLOBAL MEAN, the reliability of this estimate depends

largely on two factors: the number of available samples and on
the spread of the available sample values, usually measured in
terms of the variance or standard deviation.

When the available samples fairly represent the entire stockpile,
the uncertainty on the estimate of the global mean can be
expressed through a quantity that is usually called the "standard
error”:

Standard error of global mean = ogjobal mean =

7
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where s is the standard deviation of the available samples and

= nis the number of available samples. The standard error can

be thought of as the standard deviation of the distribution of
the underlying true global mean. Though there is only one
true global mean, we don't know what it is and our uncertainty
entails that there is some range of possible values; the standard
error describes the breadth of this range. If the standard error
is very high, then the range of possible values is very broad and
we don't know very much about the true unde rlying mean; this
can be caused either by having a large value of s (which means
that the available sample values are very erratic) or by having

a small value of n {which means that we have only a very few

samples). If s is small or if n is large, then the standard error will
be small, which signifies that the true underlying mean must
fall within a narrow range of possible values.

Since there is always some uncertainty in our estimate of the
‘true average concentration of an entire stockpile, the classifica-
" tion of stockpiled material should accommodate the fact that
we don't really know exactly the true average concentration.
For an entire stockpile to be classified as being below a specified
threshold, we need to be at least 95% certain that the overall
average concentration in the pile is below the target threshold.
This can be accomplished by calculating a pessimistically high
estimate of the average concentration that is often referred to
" as the "upper 95% confidence limit" of the global mean:

Upper 95% confidence limit = m + 2 - ¢giobal mean

where m is the arithmetic average of the available samples and
Oglobal mean IS the standard error described above. If this pes-
simistically high estimate of the global mean is below the target
threshold, we have addressed the first of the questions given
above, and can turn our attention to the issue of whether the
pile is sufficiently homogeneous based on the global mean alone.

Classification for inhomogeneous piles

Wheneve r the stockpile samples suggest that even a pessimisti-
cally high estimate of the global mean is below the target
threshold, it is important to address the issue of whether the
material within the pile is sufficiently homogeneous to warrant
classifying the entire pile as uncontaminated.

It is not appropriate to assume that a stockpile is homogeneous
simply because the process of excavating and piling the material
has mixed up the soil — stockpiling is not the same as blend-
ing. The blending that is accomplished in the stockpiles used in
many industrial processes is not due to the casual mixing that
occurs when the material is excavated and piled, but is the re-
sult of a carefully engineered stockpile. Blending piles typically
are constructed with many thin layers and are reclaimed with
specialized equipment that cuts across as many layers as pos-
sible to maximize the blending efficiency. The stockpiles used
in contaminated site remediation exercises are not engineered
as blending piles and homogeneity should not be assumed, but
should be explicitly checked with the available sample data.

here are two recommended checks of homogeneity:
. If any single analysis is more than twice the target thresh-

old, then the entire pile should be classified as being above
the threshold regardless of the estimated global mean.
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2: If the coefficient of variation is larger than one, then clas-
sification of the entire pile should be based on the highest
sample concentration regardless of the estimated global
mean. Since the coefficient of variation is the ratio of
the standard deviation of the samples to their mean, this
second check entails that if the standard deviation of the
samples is higher than their mean, then we should check
to see if the highest sample value is above or below the
target threshold.

Examples of use of classification criteria

Table 1 below shows examples of styrene analyses for discrete
samples taken from stockpiied material that needs to be classi-
fied according to the BC Environment categories: “waste” if the
styrene concentration exceeds 50 ug/g, and “industrial quality”
if the styrene concentration does not exceed 50 ug/g. For each
of the four cases shown in Table 1, the classification of the
stockpile according to the criteria presented above is discussed
below.

Table 1 Styrene measurements (in ug/g) from stockpiles.

Pile 1 Pile 2 Pile 3 Pile 4
25 7 1 7 1 7 1
.51 3 2 3 2 3 2
19 27 2 7 2 7
26 1 7 1 7 1 7
87 6 2 6 2 6 2
42 11 1 1 1 1
33 101 2 77 2 29 2
29 1 2 1 2 1 2
39 2 3 2 3 2 3
4 2 4 2 4 2

1 1 1 1 1 1

2 7 2 7 2 7

Pile 1: With the nine available samples having a mean of
39 ug/g and a standard deviation of 18.9 ug/g the stan-
dard error of the global mean is 18.9 +/9 = 6.3 ug/g.
The upper 95% confidence limit of the global mean is 39
+ 2 x 6.3 = 51.6 ug/g The chance that the true average
concentration of the stockpile is above 50 ug/g is not neg-
ligible, and the entire stockpile would have to be classified
as waste.

Pile 2: With the 24 available samples having a mean of 7 ug/g
and a standard deviation of 19.5 ug/g the standard error of
the global mean is 19.5 ++/24 = 4.0 ug/g The upper 95%
confidence limit of the global meanis 7+ 2 x 4 = 15 ug/g
Even though the mean of the entire pile is almost certainly
below 50 ug/g, there is a single sample that is more than
twice the waste threshold of 50 ug/g. This indicates that
some “hot spot” material has inadvertently been included
in a pile that was only very weakly contaminated, and the
entire stockpile would have to be classified as waste.

Pile 3: With the 24 available samples having a mean of 6 ug/g .
and a standard deviation of 14.7 ug/g the standard error
of the global mean is 14.7 ++/24 = 3.0 ug/g. The upper
05% confidence limit of the global meanis 6 4 2 x 3 =
12 w/g As with Pile 2, the true average concentration



of the entire pile is almost certainly below 50 ug/g This
example also has a single anomalous value, the 77 ug/g
analysis, that causes the standard deviation, 14.7 ug/g,
to be noticeably higher than the mean, 6 ug/g. In this
case, the coefficient of variation is bigger than one and the
classification should be based on the highest value and the
entire pile would have to be classified as waste.

Pile 4:- Like the previous two examples, the sample mean
(4 ug/g) and standard deviation (4.9 ug/g) are both low
enough that the upper 95% confidence limit of the global
mean is well below the 50 ug/g target threshold. Like the
previous example, the coefficient of variation is above one
and the classification should be based on the highest value.
With the highest value being only 29 ug/g the entire pile
would not have to be classified as waste, but in the next
lower category (industrial waste).

In all of the three last examples, Piles 2 through 4, the fact that
the coefficient of variation is above one should cause the stock-
piling practice to be suspended until the reasons for the lack
of sufficient homogeneity can be documented and corrective
action can be taken.

RECOMMENDED PRACTICE

1. Stockpiles should be created only where in situ sampling
has confirmed that the material being stockpiled is homo-
geneous, with a coefficient of variation of one or less.

2. Stockpile sampling programs should be designed to ensure
a fair representation of the contaminant concentrations in
the entire pile. Particular attention should be paid to the
possibility that the concentrations in the core of the pile
are different from those on the surface.

3. Classification of stockpiled material should be based on at
least five separate analyses, some of which may be com-
posite samples, and on the following statistical criteria:

(a) If the “upper 95% confidence limit of the global
mean”, as described in ESTIMATING A GLOBAL MEAN,
is above the classification threshold, then the en-
tire stockpile must be classified as being above the
threshold.

(b) if any single analysis is more than twice the classi-
fication threshold, then the entire stockpile must be
classified as being above the threshold.

(c) If the standard deviation of the available analyses is
larger than their mean, then the stockpiled material
should be classified according to whether the highest
analysis is above or below the classification threshold.

If the stockpiled material is classified as being above the
threshold for the reasons (b) or (¢), and not for (a) alone,
then the stockpiling practice is not accumulating homo-
geneous material; in this event, the stockpiling practice
should not continue until the reasons for lack of homo-
geneity have been documented and corrective action has
been taken.

4. Though the classification of stockpiled material may make
use of composite samples, all of the discrete samples

GUIDANCE DOCUMENT NO.12-14: STOCKPILING

_should be analyzed separately for at least one in every ten
of the stockpiles. If the analyses of the discrete samples
have a coefficient of variation greater than one, then the
stockpiling practice should not be continued until further
in situ sampling and data analysis allow more homoge-
neous regions to be identified.

5. As with any sampling program, stockpile samples should
be accompanied by a QA/QC study that allows the quality
of the analytical values to be monitored and documented.

REFERENCES AND FURTHER READING

In addition to the other guidance documents referenced on the
first page of this document, the following references provide
useful supplementary material.

Cochran, W.G., Sampling Techniques, 3rd edition, John Wiley
& Sons, New York, 1977.

Heuer, H., “Stockpiling and Blending of Bulk Materials”, in_
Stacking Blending Reclaiming of Bulk Materials, edited
by R.H. Whohlbier, Series en Bulk Materials Handling, Vol-
ume 1, No. 5, Trans Tech Publications, Aedermannsdorf,
Switzerland, 1977. :

Isaaks, E.H. and Srivastava, R.M., An Introduction to Applied
Geostatistics, Oxford University Press, New York, 1989.
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THE GENERAL IDEA

Reports of various aspects of contaminated site studies may
have several audiences, from regulators at the federal, provincial
and local levels, to members of the affected community, to
landowners and their consultants. In the particular case of the
application of statistics to contaminated sites, reporting is often
made more difficult by the fact that those who end up reading
the report are not all likely to be familiar with the technical
aspects of the statistical methods used in the study. It is often
difficult to know what exactly to include and not to include
in the reporting of a statistical study. In addition to discussing
necessary elements of a good report of any kind, such as a clear
statement of objectives and conclusions, this document also
proposes the following general principle for statistical reporting:
any reader of our report should be able to find out

e what data we used and why
¢ what assumptions we made and why
o what statistical tools and procedures we used and why

This document is not intended as a rigid prescription fa re-
porting. There are many individuals and groups whose report-
ing practices are already excellent and whose reports aiready
provide all of the information that most readers might want.
Rather than trying to prescribe a common format for all re-
ports, this document aims instead to provide ideas on what a
good report should contain for those who are unfamiliar with
reporting statistical studies or for those whose are looking for
new ideas to improve their current reporting practice.

REPORT OUTLINE

Table 1 provides an outline of the major headings of a com-
plete report of a statistical study. Not all of the sections listed
in Table 1 may be necessary since our report may be an interim
progress report or may be part of a larger report, other sections
of which cover some of the background information. While
we do not always need to generate a complete and compre-
hensive report, we should pay attention to the three what/why
guidelines given earlier. If we know, for example, that the only
people reading our report will already be familiar with the data
we are using and why we are using it, then we might choose to
leave out these details. If we are not sure who will be reading
our report, however, then we should plan for the worst case: a
. reader who knows absolutely nothing about the project. While
we certainly don't want all of our memos and progress reports
ballooning into multi-volume sets of documents, we could still
help a lot of the unprepared readers by having a brief introduc-
tory section that explains where they can find the information
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that we know to be relevant but that we choose not to include

for the sake of brevity. If some of the missing information is not
yet available, we should inform the reader of the preliminary or
draft nature of our report and advise them on when and how
they can get a more complete version. :

Though it is often tedious to compile all of the ancillary in-
formation necessary for a complete report, it can also be an .
iluminating and beneficial exercise. We have to admit that our
reports often lack critical information because of our ignorance
about the data, the assumptions or the procedures we used,
and not because we choose to omit this information. If we take
the time to find out, we might be surprised at what we learn.
In the process of trying to learn how the data base was verified,

. for example, we might discover that it was not. And in trying

to find out why not, we might learn that at an early stage in
the history of the site, two different studies had used conflicting
sample numbers that complicated the checking of the labora-
tory's own report of its analytical results against the entries in
our data base. And that might alert us to the possibility that -
sample values at certain locations have been transposed. ..

Such a story could go on and on. Similarly true stories could
be told about embarassing last-minute discoveries of unstated
critical assumptions, about missing data, and about the use of
old software. Even though we may not actually produce a com-
plete report, our statistical studies would benefit if we planned
on writing a complete report, and gathered the necessary infa-
mation. At the outset of the study, we should make a list of all
the information that a complete report would ideally contain.
During the course of the study, as time permits, we should find
out where these various bits of information can be found. Even
if we do not get the information itself into our various progress
reports and memos, we will be able to direct interested readers
to the appropriate sources and we may stumble across some
information that has important implications for our statistical
analysis and interpretation.

A report that reads well is written well, so as we put together
our report, we should continually look at it from the point of
view of our various readers. Is the presentation clear and infar-
mative? Are the graphical displays appropriately labelled and do
they support the arguments in the text? Can regulators ensure
that the contaminated site is being dealt with in an appropri-
ate manner? Can concerned members of the community get
a good appreciation for the rationale and justification for the
remediation plan? Can the landowners and their consultants
make decisions regarding their role in the remediation?
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Table 1 Outline of a report of a statistical study of data from a contaminated site.

Section Contents Section Contents

SUMMARY Salient facts and study results should STATISTICAL The statistical tools and procedures
be provided at the beginning of the re- - ANALYSIS AND used to analyze and interpret the data
port so-that a busy reader can quickly INTERPRETATION should be described, along with their
get a good overall (but not overly underlying assumptions. Every value
detailed) feel for the objectives of that is not directly measured but is
the study, the conclusions and the rather the result of some kind of es-
recommendations. timation or prediction — such as the

OBJECTIVES The goals of the study should be estimated volume of soil that requires

clearly stated so that the reader can
judge the appropriateness of assump-
tions made throughout the study.

SITE DESCRIPTION
AND HISTORY

The site’'s manmade, geographical, ge-
ological and hydrogeological features
should be described, ideally with the
support of maps and cross-sections; if
there are off-site features that affect
the study, these should also be de-
scribed. The site history should in-
clude details of site usage, with maps
showing current site usage along with
the location of manmade. features,
such as roads and buildings and, if
known, of any landfills or dumps. If the
previous site usage is relevant to the
study and significantly different from
current usage, additional maps should
be provided showing the historical evo-
jution of the site usage.

remediation, the population standard
deviation estimated for the purposes of
a confidence interval calcul ation o the
estimated ‘average contaminant con-
centration in a stockpile — should be
documented by explaining how it was
calculated and what assumptions were
involved in this calculation. All such
estimated or predicted values should
also be accompanied by a statement
about their uncertainty. .

DATA

The sample population should be de-

" scribéd along with the sampling plan

and the sampling protocol. Previous
studies that contribute data to the
study should be summarized; if previ-
ous studies contained data that may be
perceived as useful and that were not
used, the reasons for excluding these
data should be discussed. If the study
makes use of information that was not
generated as part of the study — such
as predominant wind direction, toxic-
ity of a contaminant or mobility of a
chemical compound — the us e of such
auxiliary information should be justi-
fied and the source identified. The pro-
cedures used to confirm and verify the
data base should be described.

CONCLUSIONS AND
RECOMMENDATIONS

Each conclusion should be clearly
stated with specific references to the
statistical analysis and interpretation
that support it.  Each conclusion
should also be accompanied by a dis-
cussion of how it is affected by any un-
derlying assumptions, by the accuracy
and precision of the available sample
data and by the uncertainty in esti-
mated or predicted values. Any rec-
ommendations for further work should
be accompanied by a specific goal that
sets up future objectives.

REFERENCES

All data sources, previous studies and
other sources that contributed infor-
mation to the study shouid be refer-
enced, along with any technical liter-
ature that provides additional detail
on statistical procedures used in the

. study.

EXPLORATORY
DATA ANALYSIS

The relevant features of the data
should be statistically summarized,
ideally in a graphical format with the
support of tables, so that for each im-
portant variable the reader has a good
idea about its distribution, its relation-
ship with other variables-and its spatial
distribution. Outliers should be identi-
fied and discussed individually.

APPENDICES

Analytical laboratory results should be
provided, either in printed form or, if
too voluminous, on a diskette. Labo-
ratory QA/QC procedures, the sampling
protocol and the results of check analy-
ses should also be provided. Details of
statistical computations omitted from
the main body of the report should
be included. The computer software
used for the data base compilation and
the statistical analysis should be doc-
umented by providing the name and
version for commercial software, or by
providing a brief description and a ref-
erence for any other non-commercial
software used in the study.
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DATA

. Statistical studies depend on data and we owe it to our readers
' to be clear about what data we chose to use and why. There
are three key steps in documenting the data. The first is how
we chose sample locations, the second is how we got our sam-
ple values; the third is how we merged all of the information
on sample locations and sample values, possibly from several
different sources, into a data base.

Sample locations

Whenever we use sample information in a statistical study, it
is very rare that we are interested in what the samples have to
say about themselves; what we are really interested in is what
the samples tell us about some much larger population. It is
important, therefore, to explain to our readers the rationale
for our choice of samples. Statistical inference about some
larger population will be valid only if the available samples are
representative of that larger population.

Few of us would put much faith in a public opinion poll that
was based on someone going out and talking to a couple of
friends. We expect a credible poll to be based on a system-
atic and unbiased sampling of the population; we also expect
its conclusions to be appropriately qualified by the number of
people that were actually surveyed. The readers of our repat
on the application of statistics to a contaminated site are go-
ing to be as demanding. They will want to know, for example,
how the number of samples was chosen, how the locations were
. chosen and whether field conditions necessitated modifications
. to the original plan. Since all of these are questions that a
thoughtful reader will ask, we should be sure to discuss the
rationale behind the sampling plan and to supplement it with-
maps and cross-sections showing the sample locations.

Sample values

In describing the information needed to support statistical stud-
ies used as evidence in legal proceedings, Glasser (1988) writes

“... The meaning and proper interpretation of data
cannot be divorced from the method of measurement
that gave rise to the data. Different methods of mea-
surement usually produce different statistical results.
Hence it is essential to include a detailed description
of the particular method or methods of data collec-
tion in a report of a statistical study. Such descrip-
tion should fully answer questions on how the data
were collected and how they were recorded, and by
whom..."

Though these remarks were aimed at the type of medical data
and social science data that are often used as evidence in le-
gal proceedings, they apply equally well to data collected from
contaminated sites.

Since errors are involved in every step of sample collection,

:  preparation and analysis, we need to assure our readers that

we know what biases are involved in these various steps. We
should also show that we have made every effort to keep these
biases as small as they can reasonably be and should document
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for the benefit of our readers the accuracy and precision of our
sample values. If we don't document the reliability of the data
that are the foundation of our statistical analysis and interpre-
tation, then the reader is unlikely to have much confidence in
our conclusions.

The report should discuss all samples that have been identified
as outliers and explain, whenever possible, why these anomalous
sample values were encountered. Since outlier values usually
have a large influence on the analysis and interpretation of the
data, the report should discuss the sensitivity of any conclusions
to the outlier values. Discarding outlier values, rather than
using them to better understand the nature of the probkm,
is generally a poor practice; if any outliers are discarded, the
report must provide a rationale for this decision.

Data base compilation

With the data from contaminated site studies often having to
be transcribed, keypunched or electronically merged from some
other source, there are ample opportunities for human error.
Our report needs to explain how the data base that we used
in our study was created and how we verified that the data it
contains is the same as the original data.

Verification of the data base is an area that is chronically over-
looked in environmental studies. When it comes to the quality
and integrity of the data, our attention is focused on laboratory
quality assurance and quality control (QA/QC) issues. While we
are right to demand that the analytical values from the labo-
ratory are as precise and as accurate as they can be, we are
wrong to believe that the lab is where most of our errors are
occurring. Many errors occur before the lab ever gets the sam-
ples, and again after it has reported its analytical values. As
much for our own benefit as for the assurance to the readers,
we should make sure that we have verified the data base ve are
using and that we have documented how this verification was
done.

ASSUMPTIONS

The underlying assumptions in our statistical analysis and in-
terpretation are as important as the data that form the basis
for our numerical calculations. Different assumptions about the
distribution of the values, for example, can lead to quite dif-
ferent conclusions. We should not be shy or embarassed about
having to state assumptions — all scienc e and engineering is
based on assumptions and approximations. What we should be
embarassed about is our failure to state them clearly. A clear
statement of the underlying assumptions nat only informs the
reader that we have a good understanding of the tools we are
working with, but it also allows others to improve on our work if
future data suggest that a different assumption might be more
appropriate. If we fail to state our assumptions, then the reader
may believe that we don't really understand the limitations of
the tools we are using, and others who have to work on the
same site will be less able to use our work as a sensible point
of departure.

STATISTICAL TOOLS AND PROCEDURES

The reason that statistical methods are commonly used on con-
taminated site studies is that they offer a variety of procedures
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for taking data, and, with a few assumptions, making infer-
ences about the population from which the data were drawn.
With the data clearly documented and our assumptions clealy
stated, the one other statistical issue that we must be sure to
address is what procedures we used to arrive at our results and
why we chose those methods. While we could report, fo ex-
ample, that “we contoured the data and calculated volumes",
it would be more informative to explain to the reader how we
did that. Contouring is not a unique exercise; there are dozens
of ways to contour a data set; some are based on statistical
considerations, some are based on aesthetics. If we ran a pro-
gram that did the contouring for us, it would help the reader
to know what it was and what parameters we provided; T we
contoured it manually then we should say so.

Whenever we use an estimated or predicted value, rather than
one that was actually measured, we should document how the
estimate or prediction was calculated and what assumptions
were involved. Any such estimate or prediction has some un-
certainty associated with it and our report should make some
statement about the uncertainty. In some cases, there are sta-
tistical procedures that allow us to quantify the uncertainty;
even if there are no such procedures readily available, it would
help our reader to have some qualitative statement regarding
the uncertainty of our various estimates and predictions. Based
on our detailed knowledge of the data and the procedures that

we used, do we believe our estimates to be very accurate? Or -

would we prefer the reader to think of them as ballpark figures?

Finally, through all of the uncertainties in our fundamental data,
our various assumptions and our various choices of statistical
procedures, what really matters is the bottom line: would the
remediation decision change if we had more reliable data, a if
we made different assumptions, or if we used a different statisti-
cal approach? In our report, we should try to summarize for the
reader how sensitive are our conclusions and recommendations
. to the cumulative effect of all the uncertainties, assumptions
and choices that are an inevitable part of any statistical study.

REFERENCES AND FURTHER READING

In addition to the other guidance documents in this series, the
following references provide useful supplementary material:

Brushaw, T.C., Alred, G.J. and Oliu, W.E., Handbook of

Technical Writing St. Martin's Press, New York, 1987.

Glasser, G.G., "Recommended standards on disclosure of pro-
cedures used for statistical studies to collect data submit-
ted in evidence in legal cases,” Appendix Il of Appendix
F: "Recommendations on pretrial proceedings,” in The
Evolving Role of Statistical Assessments as Evidence in the
Courts, S.E. Fienberg (ed.), Springer-Verlag, New York,
1989.

Kaltreider, R., et al., Data Quality Objectives for Remedial Re-
sponse Activities: (Volume 1) — Development Processes,
EPA-540-G-87-003, CDM Federal Programs Corporation,
1987.
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THE GENERAL IDEA

Randomization is a recurring aspect of sampling and data anal-
ysis in contaminated site studies. For example, during in situ
characterization, if we identify a particular value as an out-
ier and need to replace it with another nearby sample, it is re-
commended that this replacement sample be located at random
within a circle of radius 1 m from the original sample location.
Other examples of situations that involve randomization are:

o For monitoring internal heterogeneity of composite sam-
ples, one in every ten composite samples should be chosen
at random to have all of its discrete samples analyzed.

o In designing a sampling grid for a contaminated site, it
may be necessary to randomize the origin of the grid.

With these and other similar situations that call for random-
ization, it is not appropriate to make the decision haphazardly;
lack of forethought does not produce good random samples.
Nor is it appropriate to leave the choice of a random sam-
" ple to someone’s guesswork; the “random” choices that people
- . make usually turn out not to be suitable for statistical purposes.
Proper randomization is a systematic and repeatable procedure
that can be checked and verified.

This guidance document addresses the issue of randomization
and presents procedures for making random choices. It begins
with a discussion of uniform random numbers and then de-
scribes how a table of such numbers can be used for random-
ization. Other guidance documents in this series that make
specific references to randomization are COMPOSITE SAMPLES,
SAMPLING PLANS, STOCKPILING and OUTLIERS.

UNIFORM RANDOM NUMBERS

The cornerstone of randomization is a sequence of uniform ran-
dom numbers between 0 and 1. Table 1 on the next page shows
500 uniform random numbers; information on how to generate
such a table, or on other similar tables, can be found in the
references listed at the end of this guidance document. The
values shown in Table 1 are "uniform” in the sense that a his-
togram of the values, such as the one shown in Figure 1, will
show that the numbers in the sequence are as likely to come
from one particular class in the histogram as from any other
class — all values are equally probable. The values are “ran-
dom " in the sense that the next value in the sequence is always
unpredictable. Whether we read across the rows or down the
columns of Table 1, there is no pattern or clue that tells us what
the 501st value might be; regardless of the past sequence, all
values between 0 and 1 remain equally probable. One way of
demonstrating the lack of predictability in the values is to plot

- This gu:dance document is one of a series thal outllnes lmportant basrc slatlstlcal concepts and procedures that are useful
in contaminated ‘'sites studies. BC Environment recommends that these suggestions be followed where appllcable but is
‘open to other techniques prowded that these allernatlves are techmcally sound Before a dlfferent methodology is adopted
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Figure 1 Histogram of the 500 val-
ues shown in Table 1.
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Figure 2 Scatterplot of the 250 con-
secutive pairs from Table 1.

USING UNIFORM RANDOM NUMBERS

A sequence of uniform random numbers, such as'the one shown
in Table 1, can be used as the basis for randomization proce-
dures that are both systematic and verifiable. Two common
randomization problems are discussed below; the first is the
random selection of one of several samples, the second is the
selection of a random location.

Selecting a random sample

The following procedure can be used to select one sample at
random from a group of N samples:

1. Assign numbers 1 through N to the samples; which sam-
ple gets which number is unimportant, but each sample
should have a unique index from 1 to N. The assignment
of these unique indexes should be recorded for future ref-
erence in case another random sample is needed or in case
the randomization needs to be checked.

2. Generate U, a uniform random number between 0 and 1.
This can be done by taking the available next number from
a table of random numbers, such as the one given in




should be crossed off so that it is immediately. obvious
which one to use when we next consult the table.

Random integer = Integer part of [U x N + 1]

Table 1 500 uniform random numbers between 0 and 1.
534 489 800 .947 641 .829 .719 .287 432 .764
222 164 640 730 .600 .252 .936 .870 .086 .582
305 122 .188 .800 .744 546 405 383 .820 .208
701 309 556 .385 466  .172 .503 403 .377 .320
829 672 .230 .706 .397 139 .559 241 .200 .756
233 122 310 .105 434 929 .653 050 531 .914
404 460 612 524 870 .848 .086 .854 480 .030
093 443 878 .933 104 .989 .128 470 993 .452
485 559 471 .002 124 .167 .263 796 469 .346
274 .011- 636 .372 .848 909 .439 215 121 549
146 702 718 .097 .357 .081 .660 .068 .995 .712
274 379 .064 .820 354 980 .800 .094 .888 .507
536 599 423 938 .687 .012 .261 826 .730 .387
696 .870 654 620 .214 904 274 895 .999 067
673 686 578 817 .397 .881 .670 683 .334 .224
-.521 416 175 233 474 736 .780 484 .879 .361
318 .043 .628. .142 374 .801 521 673 .692 .274
.810 141 .799 310 .370 .578 163 809 160 .038
774 271 362 162 546 .846 473 704 .692 384
938 147 451 812 547 638 .447 982 070 973
854 066 591 678 .701 .520 .510 425 .230 .447
388 721 986 541 114 564 .060 046 .369 .535
945 044 002 925 671 .588 .072 730 .205 .190
083 957 .280 .442 153 795 .990 .020 .720 .046
941 .336 762 .324 254 298 045 424 131 .794
318 136 949 473 103 .807 .106 .079 .930 .484
900 .026 .684 .249 .006 .668 .369 434 .066 .547
928 403 169 670 447 987 448 347 .662 948
415 110 796 .842 376 305 422 .049 .725 .800
026 493 301 .312 229 .627 .284 168 351 .267
079 613 006 .661 .482 .329 .899 503 .222 731
603 628 .857 .764 202 .708 .808 977 .382 .051
532 907 .056 .899 690 .905 .191 .235 157 .007
642 759 448 196 419 721 .083 .342 251 918
742 593 056 944 619 .913 .554 220 612 .466
994 670 667 .826 907 .126 .815 905 .250 .174
120 688 696 520 .326 .278 222 984 774 .228
844 381 078 958 .376 .085 .199 .160 .851 .658
658 938 514 970 .204 .058 .639- 322 879 159
019 518 204 603 .260 .499 .829 759 .288 .742
024 453 397 .055 .061 .339 .697 .667 .633 .128
963 641 523 .588 781 .325 442 732 .323 .809
817 115 764 412 .863 .245 440 .874 .505 766
910 733 .353 .293 .968 .509 .948 301 .614 .890
400 091 669 .904 430 .968 .628 451 .957 176
254 047 .881 .048 .093 .334 221 f094 629 974
468 168 594 988 798 .507 600 .342 768 .667
319 932 730 111 995 .140 932 599 .445 .087
423 567 313 262 .865 .659 .046 184 938 864
943 127 640 741 834 900 .687 704 797 922

Table 1. As the tabulated random numbers are used, they

Turn U into an integer from 1 to N by multiplying it by N,
adding 1 and dropping any digits after the decimal point:
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4. Select as the random sample the one that was assigned
this calculated random integer as its unique index.

As an example of the use of the procedure, let us go through
the exercise of deciding which of the ten composite samples
shown in Table 2 should be selected for separate analysis of
all of its discrete samples. The first column in this table gives
the sample number for the composite samples, the next four
columns identify the discrete samples that make up each of
the composite .samples and the last column gives the unique
index from 1 to 10 that we have assigned according to step
1 of the procedure given above. Table 3 shows our table of
random numbers; in this example we are supposing that we
have been using it for similar randomization exercises and have
been crossing off the numbers as we use them; the next nurber
on our list, 0.466, is the value of U. We take this number and
turn it into a random index from 1 to 10:

Random index = Integer part of [0.466 x 10 + 1]
' = Integer part of 5.66
5

Our random sample from the group of ten would therefore be
C130 since this is the one that was designated as number 5
when we assigned unique indexes from 1 to N.

Table 2 Ten composite samples and their discretes,

Composite Unique
Sample No. Discrete Sample Numbers Index
C103 D562 D563 D564 D565 1
C104 D567 D568 D569 D570 2
C105 D572 D573 D574 DS75 3
C129 D709 D710 D711 D712 4
C130 D714 D715 D716 D717 5
C131 D719 D720 D721 D722 6
Ci149 . D831 D832 D833 D834 7
-C150 D836 D837 D838 D839 8
C151 D841 D842 D843 D844 9
C172- D902 D903 D904 D905 10

Table 3 Uniform random numbers between 0 and 1.

701 309 -556 385 .466 172 .503 .403 .377

Selecting a random location

The following procedure can be used to select a random loca-
tion within a rectangular area whose width is Xyidth and whose
height is Yheignt (see Figure 3):

1. ‘Generate U; and Uj, two uniform random numbers be-
tween 0 and 1. This can be done by taking the next pair
of numbers from a table of random numbers, such as the
one given in Table 1. As the tabulated random numbers
are used, they should be crossed off so that it is immedi- -
ately obvious which one to use when we next consult the
table.
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2. Turn Uy into an x-coordinate from 0 to Xyidih by multi-
plying it by Xyigth and turn Ug into a y-coordinate from

0 to Yheight by multiplying it by Ypeight:
X=U1 X Xuidth Y = U2 X Yheight

3. Using the corner of the rectangular area as the origin (0,0)
select as the random location the point whose coordinates
are (X.Y). ‘

Xwidth =10m
U=0172 X=172m
Lg U,=0503 Y=302m
" W 172,302 )
>;2 Random
Location
(0,0)

Figure 3 Random sampling from a rectangular area.

If the area within which we want a random sample is circular,
rather than rectangular, a similar procedure can be used, with
the first uniform random number being converted to a random
azimuth from 0° to 360° and the second uniform random num-
ber being converted to a radius from 0 to R, the radius of the
circular area (see Figure 4):

Azimuth = Uy x 360°  Radius = Us x R

As an example of the use of this procedure, let us go through
the exercise described at the beginning of this document. At
one of our existing sample locations there is an outlier value
that we believe to be erroneous and we need to collect a re-
placement sample from a random location within 1 m of the
existing sample. Table 4 shows the random numbers left after
we have crossed off the one we used in the first example. The
next two values are 0.172 and 0.503. Multiplying the first one
by 360 gives us a random azimuth of 62° (N62°E). Since the
radius of our circular area is 1 m, the second random num-
ber can serve directly as our radius. The replacement sample
would therefore be taken at a distance of 0.503 metres from
the location of the outlier sample in a direction of N62°E.

Table 4 Uniform random numbers between 0 and 1.

61 309 556 385 466 172 503 403 377
North
Random
Location
West East
Uy=0172  Azimuth = 62

U, = 0.503 Distance = 0.503m

South

Figure 4 Random sampling from a circular area.

RECOMMENDED PRACTICE

1. When selecting a single random sample from a larger group
or when selecting a random location within a specified
area, use a systematic and verifiable procedure that is
based on uniform random numbers.

2. Use a published table of random numbers or, if a computer
or calculator is being used to create the random numbers,
print an actual table of the random numbers it produces

L so that the procedure can be checked and verified.
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